1068

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 38, NO. 5, SEPTEMBER 2008

Queuing Network Modeling of a Real-Time
Psychophysiological Index of Mental
Workload—P300 in Event-Related Potential (ERP)

Changxu Wu, Yili Liu, Member, IEEE, and Christine M. Quinn-Walsh

Abstract—Modeling and predicting of mental workload are
among the most important issues in studying human performance
in complex systems. Ample research has shown that the amplitude
of the P300 component of event-related potential (ERP) is an
effective real-time index of mental workload, yet no computational
model exists that is able to account for the change of P300 am-
plitude in dual-task conditions compared with that in single-task
situations. We describe the successful extension and application
of a new computational modeling approach in modeling P300
and mental workload—a queuing network approach based on
the queuing network theory of human performance and neuro-
science discoveries. Based on the neurophysiological mechanisms
underlying the generation of P300, the current modeling approach
accurately accounts for P300 amplitude both in temporal and
intensity dimensions. This approach not only has a basis in its
biological plausibility but also has the ability to model and predict
workload in real time and can be applied to other applied domains.
Further model developments in simulating other dimensions of
mental workload and its potential applications in adaptive system
design are discussed.

Index Terms—Computational modeling, dual task, event-
related potential (ERP), mental workload, P300, queuing network.

I. INTRODUCTION

ENTAL workload is one of the most important issues

in studying human performance in complex systems
[3]-[5]. Overloaded operators are more likely to make errors,
reducing the safety of human—machine systems [4]. From the
system engineering perspective, modeling and predicting men-
tal workload at an early stage in system design are very helpful
to reduce the mental workload of operators [4], [3]. Moreover,
designing adaptive user interface in “real-time human engi-
neering” expects real-time prediction of mental workload, so
that the user interface can propose corresponding actions to
keep operator mental workload at an optimal value [72]. In
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addition, there is a growing research field in human factors
called neuroergonomics, which focuses on the investigation of
the neural bases of mental functions and physical performance
in applied domains [71]. If a computational model can bridge
the neural activities (measured by event-related potential (ERP)
or functional magnetic resonance imaging technique) and men-
tal workload, it might be a useful tool to assist researchers in
human factors to understand the basic mechanisms of mental
workload and design the interface to optimize the workload.

To measure changes in mental workload in real time, event-
related brain potential measurements stand out to be one of the
most effective indexes of mental workload in comparison with
some other behavioral, subjective, and psychophysiological
measurements [7]. There are several advantages in using the
ERP technique to measure mental workload. First, it provides
a relatively continuous record of data over time, meeting the
requirement of real-time human engineering. Second, it is not
obtrusive to task performance because it does not require overt
responses which are needed in measuring mental workload
with secondary-task measurements. Third, compared with some
other physiological measurements such as the pupil diameter
which is sensitive to all information stages including percep-
tual, cognitive, and motor processing, ERP (e.g., P300 compo-
nent) is diagnostic and sensitive to stimulus evaluation process
(perceptual and central processing resources) but not motor
execution process [7].

Ample ERP research has shown that the amplitude of the
P300 component in the ERP typically reflects the current state
of mental workload [9]-[13], [87]. P300 is a positive compo-
nent characterized by a parietally maximal scalp distribution
and a latency between 300 and 800 ms [13]. Here, latency
refers to the time interval between the arrival of stimulus and
the time point when the peak of the potential is observed.
Because of its ease in measurement, P300 has become the
most frequently measured ERP component. The most important
finding of P300 related to mental workload is that the P300
amplitude (peak value) of a secondary task is reduced in dual-
task conditions compared with that in the corresponding single-
task situation of performing the secondary task alone, and the
P300 amplitude of the secondary task decreases further when
the difficulty of the primary task increases [5], [14], [15]. The
study of Wickens et al. [14] is a representative study among
the studies on this topic and is therefore selected as the target
experiment for modeling in this paper (a detailed description of
their experiment is in the modeling section of this paper).

To model P300 in accordance with its biological realism—an
important requirement for building cognitive models [16], it
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is desirable to introduce the physiological mechanism un-
derlying the generation of P300 discovered in neuroscience
studies. Several researchers have proposed that P300 results
from intracortical currents which are triggered by the release
of norepinephrine (NE) [17], [18]. NE, originally described as
a “classical neurotransmitter” (presumably because of its early
discovery and its effects in peripheral systems) [70], is now
viewed as a neuromodulator because of its role in central neural
system: rather than producing direct excitatory or inhibitory
effects on postsynaptic neurons, NE modulates such effects pro-
duced by other neurotransmitters such as glutamate and gamma
aminobutyric acid [70]; NE also alters the “signal-to-noise
ratio” of response evoked by other afferents, both excitatory and
inhibitory, enhancing synaptic transmission in target circuits.
Such modulatory effects have since been described for NE in
many brain circuits in synaptic transmission and have been
shown to be mediated, via different transduction mechanisms,
by both 3 and «v;-adrenergic receptors [88]-[93].

NE is produced by the locus coeruleus—NE (LC-NE) sys-
tem (a nucleus in the pontine regions of the brain stem that
consists of NE-containing cells) [17], [21]; the LC-NE system
synthesizes the NE and then sends it to the central nervous
system via its efferent projections. NE is released in certain
brain regions (known as P300 generators), causing a change
of conductivity of these regions and then producing a change
of the amplitude of P300 [17]. Nieuwenhis et al. [17] reviewed
the major findings on the generators of P300 and found that
P300 generators are mainly located in the prefrontal cortex, the
medial temporal lobe structures (including the hippocampus),
the temporal—parietal junction, and adjacent areas which are
responsible for perceptual processing.

Aside from the experimental studies of the P300 component
related to mental workload and its mechanism, it is necessary
to review the related computational models of mental workload,
ERP, and the LC-NE system.

In human factors engineering, several models of mental
workload have been successfully developed, and they can be
categorized into the following three groups: conceptual models,
mathematical and simulation models, and task-analytic models.
Among the conceptual models, Wickens’ resource model [22]
is one of the most influential models, and it describes how
the amplitude and latency of the P300 component is related
to the “resource” in cognitive information processing. In his
model, the amplitude of the P300 component of the secondary
task reflects the perceptual—-cognitive resources which are de-
pleted by the primary task [22]. Among the mathematical and
simulation models, the representative models include control-
theory-based model [23], queuing-theory-based model [24],
[25], procedure-oriented crew model [26], Micro-SAINT [27],
human operator simulator [28], mathematical model [29], and
model human processor (MHP) [30]. Unlike the models of ERP
and the LC-NE system which focus on the biological aspect of
the cognitive system, these models emphasize their engineering
applications, and the definition of mental workload varies based
on the feature of the model itself. For example, Rouse’s queuing
theory model [25] regards the server utilization as a representa-
tion of mental workload. The task-analytic models include time
line analysis and prediction model [31], task analysis/workload
[32], workload index [33], and Bi and Salvendy’s model [34]
(see [3]-[6] for a comprehensive review of these models).
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Different from the models in human factors engineering, the
models introduced in the following section focus on the physi-
ological and biological mechanisms in generating ERP waves.
In modeling ERP and electroencephalography (EEG), several
mathematical and simulation models have been successfully
established [35]-[38]. Building on a lumped-parameter model,
Jansen and Rit [37] developed a computational model to pro-
duce EEG rhythms. Based on Jansen and Rit’s model, a neural
mass model proposed by David and Friston [36] assumed that
the behavior of a population of neurons (millions of interacting
neurons) can be approximated using several state variables
(e.g., mean membrane currents, potentials, and firing rates). The
model reproduced brain signals within the oscillatory regime by
simply changing the population kinetics.

In modeling the LC-NE system, several neural network
models have been developed successfully [18], [39]. These
models usually include several layers of connectionist units
representing detection/input, decision, and response. These lay-
ers are connected with excitatory and inhibitory connections,
and the weights of these connections are updated during the
learning process. The model of Nieuwenhuis et al. [18] is able
to successfully simulate LC activity and output of NE from the
LC-NE system. Based on the LC activity and NE output, their
model quantifies the attentional blink—a temporary deficit in
processing of a target stimulus following successful processing
of a previous target.

In sum, each of these models demonstrates its usefulness and
ability to quantify one or several aspects of mental workload,
ERP, or the LC-NE system. However, none of these models
quantifies the major finding of P300 amplitude and latency
related to mental workload based on its physiological mecha-
nisms. As suggested by Olsen and Olsen [40], modeling mental
workload remains to be a challenge in cognitive modeling, even
though overt behavior (reaction time and response accuracy)
has been modeled by existing models more successfully.

In this paper, we describe a queuing network modeling
approach to quantify human performance and P300 as one
of the most important psychophysiological indexes of men-
tal workload, focusing on both biological realism of mental
workload and its engineering application. First, we introduce
the platform of this modeling approach—a simulation model
of a queuing network architecture representing information
processing in the brain. Second, based on this network platform,
a set of mathematical equations is developed and implemented
into the simulation model to quantify the amplitude and latency
of P300. Third, the modeling results are presented and validated
with the results of the representative experimental study of
Wickens et al. [14]. Finally, we discuss the implication of
the modeling approach and its further extensions to model the
experimental results of other electrophysiological and human
factors studies.

II. QUEUING NETWORK MODELING
OF HUMAN PERFORMANCE

In modeling human performance, computational models
based on queuing networks have successfully integrated a large
number of mathematical models in response time [1] and in
multitask performance [2] as special cases of queuing networks.
Moreover, it unifies the two isolated major groups in reaction
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Fig. 1.
onto the human brain [55], [84], [95], [96].

time models (e.g., cascade model and program evaluation and
review technique networks) and response accuracy models
(e.g., accumulator and diffusion models) [41]. A simulation
model of a queuing network mental architecture, called the
queuing network—MHP (QN-MHP), has been developed to rep-
resent information processing in the mental system as a queuing
network on the basis of neuroscience and psychological find-
ings. Ample research evidence has shown that major brain areas
with certain information processing functions are localized and
connected with each other via neural pathways [20], [42]-
[44], which is highly similar to a queuing network of servers
that can process entities traveling through the routes serially
or/and in parallel, depending on specific network arrangements.
Therefore, brain regions with similar functions can be regarded
as servers, and neural pathways connecting them are treated as
routes in the queuing network (see Figs. 1 and 2). Furthermore,
it has been discovered that information processed in the brain
is coded in population spike trains [45]; depending on differ-
ent tasks and learning stages, the to-be-processed information

A. Visuospatial sketchpad

B. Phonological loop

C. Central executive

D. Long-term procedural memory
E. Performance monitor

F. Complex cognitive function

G. Goal initiation

H. Long-term declarative &

V. Sensorimotor integration
W. Motor program retrieval

X. Feedback

information collection

Y. Motor program assembling
and error detecting

Z. Sending information to body
parts

21-25: Body parts: eye, mouth,
left hand, right hand, foot

Parietal lobe

Occipital lobe

(a) General structure of the queuing network model [55], [62], [84], [95], [96] and (b) the approximate mapping of servers in the queuing network model

represented by these spike trains is sometimes processed by
the brain regions (servers) immediately. Sometimes, they have
to be maintained in certain regions to wait for the previous
spike trains finishing their processing [46]. Hence, these spike
trains can be regarded as one type of entity in the queuing
network. Population spike trains transmitting through different
brain regions require various neuromodulators to initiate and
maintain behavioral and forebrain neuronal activity, which are
essential for the collection and processing of sensory informa-
tion [21]; these neuromodulators are regarded as the second
type of entities in the queuing network.

QN-MHP is a task-independent cognitive architecture and
has been successfully used to generate human behavior in
real time, including simple and choice reaction time [47],
transcription typing [58], [96], psychological refractory period
[59], visual search [60], and driver performance [61]. Moreover,
QN-MHP is able to account for the subjective mental workload
measured by NASA-task load index [94] and brain imaging
data in the transcription typing task [62].
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Fig. 2. Components of the simulation model (QN-MHP) in simulating the concurrent task: (Red entities) The manual tracking task and (green entities) the audio

probe counting task.

The QN-MHP consists of the following three subnetworks:
perceptual, cognitive, and motor subnetworks as described in
the following sections.

A. Perceptual Subnetwork

The perceptual subnetwork includes a visual and an auditory
perceptual subnetwork, with each of which being composed of
four servers. In the visual perceptual subnetwork, light waves
(represented by numerical codes) are transmitted to neuron
signal (represented by information entities) at the eye, the
lateral geniculate nucleus, the superior colliculus, the primary
visual cortex, and the secondary visual cortex (represented by
Server 1) [20]. Then, these entities are transmitted in paral-
lel visual pathways—the parvocellular stream (represented by
Server 2) and the magnocellular stream (Server 3) where the
object content features (e.g., color, shape, labeling, etc.) and
location features (e.g., spatial coordinates, speed, etc.) are
processed [44], [48]. The distributed parallel area (represented
by Server 4)—including the neuron connections between V3
and V4 as well as V4 and V5, the superior frontal sulcus, and
the inferior frontal gyrus—integrates the information of these
features from the two visual pathways and generates integrated
perception of the objects [20], [47].

The auditory perceptual subnetwork also contains the fol-
lowing four servers: the middle and the inner ear (represented
by Server 5') transmits sound to parallel auditory pathways,
including the neuron pathway from the ventral cochlear nucleus
to the superior olivary complex (represented by Server 7) and
the neuron pathway from the dorsal and ventral cochlear nuclei
to the inferior colliculus (Server 6) where location, pattern, and
other aspects of the sound are processed [20]. The auditory
information in the auditory pathways is integrated at the pri-
mary auditory cortex and the planum temporale (represented
by Server 8) [49].

B. Cognitive Subnetwork

The cognitive subnetwork includes a working memory sys-
tem, a goal execution system, a long-term memory system, and
a complex cognitive processing system.

Because the middle ear is located behind the eardrum and the inner ear is
located in the temporal bone, the location of Server 5 is marked outside of the
picture of the brain in Fig. 2.

Following Baddeley’s working memory model, there are four
components in the working memory system: a visuospatial
sketchpad (Server A), representing the right-hemisphere poste-
rior parietal cortex; a phonological loop (Server B), standing for
the left-hemisphere posterior parietal cortex; a central executor
(Server C), representing the dorsolateral prefrontal cortex, the
anterior—dorsal prefrontal cortex, and the middle frontal gyrus;
and a performance monitor (Server E), standing for the anterior
cingulate cortex. The visuospatial sketchpad and the phono-
logical loop store and maintain visuospatial and phonological
information in working memory [44].

The goal execution system (Server G) represents the or-
bitofrontal region, the brain stem including the LC-NE system,
and the amygdala complex which are typically involved in goal
initiation and motivation [50]. In addition, it sends the neu-
romodulator entities to other servers following the NE output
function in the model of Nieuwenhuis ez al. [18].

The long-term memory system represents the following two
types of long-term memory in the human brain: 1) declarative
(facts and events) and spatial memory (Server H), standing for
the medial temporal lobe including the hippocampus and the
diencephalons which store various kinds of production rules
in choice reaction, long-term spatial information, perceptual
judgment, decision making, and problem solving; and 2) non-
declarative memory (procedural memory and motor program)
(Server D), representing the striatal and cerebellar systems
which store all of the steps in a task procedure and the motor
programs related to motor execution [20].

The complex cognitive processing system (Server F) stands
for the brain areas performing complex cognitive functions—
multiple-choice decisions, phonological judgments, spatial
working memory operations, visuomotor choices, and mental
calculations. These brain areas include the intraparietal sulcus,
the superior frontal gyrus, the inferior frontal gyrus, the inferior
parietal and ventrolateral frontal cortices, the intraparietal
sulcus, and the superior parietal gyrus [44], [51], [52].

C. Motor Subnetwork

The motor subnetwork includes five servers corresponding
to the major brain areas in retrieval, assembling, and execution
of motor commands as well as sensory information feedback.
First, Server V represents the premotor cortex in Brodmann
Area 6, which plays an important role in sensorimotor and
sensory cue detection [43], [53], [54]. Second, the basal ganglia



1072

(Server W) retrieves motor programs and long-term procedural
information from long-term procedural memory (Server D)
[20], [55], [56]. Third, the supplementary motor area and the
pre-SMA (Server Y) have the major function of assembling mo-
tor programs and ensuring movement accuracy [57]. Fourth, the
function of the primary motor cortex (Server Z) is to address the
spinal and bulbar motor neurons and transmit the neural signals
to different body parts as motor actuators (mouth, left and right
hand, and left and right foot servers, etc. [43]). Fifth, the S1 (the
somatosensory cortex, Server X) collects motor information of
efference copies from the primary motor cortex (Server Z) and
sensory information from body parts and then relays them to the
prefrontal cortex (Server C) as well as the SMA (Server Y) [43].

III. MODELING OF HUMAN PERFORMANCE
AND P300 IN A TRACKING TASK

In the following section, we describe our use of the queuing
network modeling approach to model human performance and
P300. First, a set of formulas is developed and implemented
in the simulation model to quantify the amplitude and latency
of P300. Second, a representative experiment on human per-
formance and P300 is described, which was used to validate
the modeling method proposed in this paper. In the third sec-
tion, we describe how to simulate performance and P300 with
QN-MHP.

A. Modeling the Amplitude and Latency of P300

Quantification of P300’s amplitude and latency in the queu-
ing network model is composed of the following two parts:
1) modeling the entities representing the neuromodulator in
synaptic transmission and 2) based on this modeling result and
existing computational models in electric fields of the brain,
both the amplitude and latency of P300 are quantified by a
set of formulas. All of these formulas are implemented in the
simulation model so that the model is able to generate the
corresponding values for the dependent variables in real time.

1) Modeling NE in Synaptic Transmission: As described in
Section I of this paper, after NE is produced from the LC-NE
system, NE reaches the target brain regions and is involved in
processing the information of tasks [88], [92]. Based on the
balance of NE before and after synaptic transmission [19], [20],
the total amount of released NE in processing the tasks (suppos-
edly, there are ¢ tasks which are concurrently processed) equals
the difference between the amount of NE synthesized from the
LC-NE system (NErc [18], [68]) and the amount of residual
NE left (NEy) in the presynaptic neurons [see (1)], where 7
is a normally distributed random factor with mean being equal
to zero

3
Z NErel,m = NELC - NEO + 7. (1)

m=1

For any one of these ¢ tasks, the amount of NE released for
task ¢(NE,e1;) is determined by

3 3
NErel,i = Z NErel,m - Z NErel,m- (2)
m=1 m#i
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Therefore, we have

3
NE,o; =NELg — » NEam —NEg+7. (3
m#£i

Equation (3) can be rewritten as

¢
NE;e1i =NELc— Y Y NipjCn j;NE,—~NEg+7  (4)

m#i all j

where N, ; is the number of information entities of other
tasks concurrently processed in server j, Cy, ; is the number
of processing cycles for each of those entities at server j, and
NE, is the amount of NE needed for each of those entities at
each processing cycle at server j.

2) Modeling P300 Amplitude: In the computational models
of brain potentials, Nunez [63] proposed the following basic
formula for quantifying the amplitude of the brain potentials:

1

¢= 47rd

&)

where ¢ is the amplitude of the ERP potential (in microvolts),
r is the distance from the electrical field point (the location
where NE is released) to locations of the electrodes on the
scalp, ¢ is the resistivity of the brain regions across this distance,
and [ is the current from the electrical field point where NE is
released.

Because there is an inversely proportional relation between
the resistance and the amount of NE released (NE,;) [18], [64],
¢ in (5) can be further quantified in (6) where b is a constant in
this inverse relationship

§ = b/NE,ql. (6)

Moreover, the number of population spike trains (represented
by information entities) (V) is in direct proportion to the
current [63]. I in (5) can be quantified in (7) where k is a
constant in this relationship

I =EkN. @)
Combining (5)—(7), we have

kN

NErelN
= 477 (b/NE,q) = (k/b) '

4mr

¢

®)

Furthermore, because P300 comes from the generators of
P300 wave in certain brain regions, (4) can be further devel-
oped into

3
NE.ci =NELc— Y Y NipwjoCin jNE,—~NEg + 7 (9)

m%i all 5/

where j' represents the servers which can serve as the gen-
erators of P300 corresponding to the neuroscience findings
(servers in the perceptual subnetwork; Servers A, B, C, E,
and F in the cognitive subnetwork corresponding to the P300
generators described in Section I).
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TABLE 1
NGOMSL-STYLE TASK DESCRIPTION OF THE MANUAL TRACKING AND AUDITORY PROBE COUNTING TASKS

GOAL: Do manual tracking task

Method for GOAL: Do manual tracking task

Step 1. Watch for <the spatial difference between the cursor and the target> on <the display>

Step 2. Retain < the spatial difference>
Step 3. Decide: if there is a difference then go to step 4; else go to step 7

Step 4. Compute <the expected movement direction (8) and time of the joystick (t)>

Step 5. Move <joystick> in <direction 6> for time <t>
Step 6. Go to step 1
Step 7. Stop moving <joystick>

GOAL: Do auditory probe counting task
Method for GOAL: Do auditory probe counting task

Step 1. Listen to <the tone> from <the speaker>

Step 2. Retain <the tone>

Step 3. Compare: <the tone> with <the target tone> in memory
Step 4. Decide: If match, then go to step 5

Else move to step 1

Step 5. Compute <increase the counter>

Step 6. Retain <the counter>

By combining (8) and (9), the P300 amplitude, including its
peak for task i, is quantified in

NE,e1,; N;
drr

¢i=(k/b)

3
N
B 3 D R
m#i all j/

=(k/b)

(10)

Therefore, when the amount of NE used by the primary
task increases from zero (single-secondary-task condition) to a
certain value (dual-task condition), the amount of NE available
for the secondary tasks decreases. This decrease in the amount
of NE produces an increase in the resistivity of the brain regions
and then a decrease in the amplitude of P300 of the secondary
task. The P300 amplitude of the secondary task reduces further
as the difficulty of the primary task increases, consuming a
greater amount of NE.

3) Modeling P300 Latency: The latency of P300 for a cer-
tain task i(L; ) is composed of the following three parts: the time
interval between the stimulus presentation and the arrival of
stimulus information at the LC-NE system (7; p + T} 4 /B +
T;.c + T; i), the time interval between the arrival of stimulus
information at the LC-NE system (¢ = 0) and the time point
when NEq ¢ reaches its peak (t,), and the conduction time of
NE from LC to the forebrain (NE.onq) which processes task
information, as shown in

Li = E,P + Ti,A/B + E,C + ZFi,E + tp + NEcond (11)
where T; p, T; 4B Ti,c» and T; g are the processing times of
task ¢ at the perceptual subnetwork, at Server A or B, and at
Servers C and E, respectively.

B. Representative Experiment on P300 and
Human Performance

Wickens et al. [14] measured human performance and the
P300 in a concurrent task which includes a visual-manual
tracking task (primary task) and an auditory probe counting
task (secondary task). In the primary task, subjects manipulated
a joystick and attempted to superimpose a cursor on a target
which was moving in a series of discrete horizontal displace-
ment on a visual display. The following were the three levels
of difficulty in the primary task. 1) First-order predictable (1P):
The target moved only in a left-right direction, and only the

magnitude of the movement/step was unpredictable; the control
of the cursor with the joystick followed first-order control—
constant displacement of the joystick caused the cursor to move
at a constant velocity in the movement direction of the joystick.
2) First-order unpredictable (1U): Both direction and magni-
tude of the movement of the target were unpredictable, and the
control of the cursor with the joystick still followed first-order
control. 3) Second-order unpredictable (2U): Both direction and
magnitude of the movement of the target were unpredictable,
and the control of the cursor with the joystick followed second-
order control—constant displacement of the joystick acceler-
ated the cursor’s movement. Concurrently with the tracking
tasks, the subjects were assigned to perform an auditory probe
counting task. The subjects heard a Bernoulli series of tones
of high and low pitches, occurring with equal probability, and
the subjects were instructed to count the number of occurrences
of the low-pitched tones. They found that the P300 amplitude
(peak value) of the secondary task was reduced in dual-task
conditions compared with that in a single-task situation and that
the P300 amplitude (peak value) was decreased further when
the difficulty of the primary task increased.

C. Simulation of Human Performance in the
Target Experiment

Simulation of any human—machine interaction task requires
the specification of the following three components: a human
model, the machine or the environment with which the human
model interacts, and the task input to the human model. These
three components correspond to the simulation model of queu-
ing network (QN-MHP), a joystick, a visual display presenting
the cursor and the target, and a speaker presenting the auditory
stimuli, respectively, in the context of the dual task—manual
tracking and auditory probe counting (see Fig. 2).

The general human model of QN-MHP is described in the
previous section. In order to possess the basic knowledge of
how to track and count, the QN-MHP must have the corre-
sponding procedure knowledge rules stored in its long-term
procedure memory server. Thus, following the general method
of QN-MHP simulation [61], the NGOSML-style (an acronym
for a Natural Language GOMS: Goals, Operators, Methods,
and Selection rules) task descriptions of both the manual
tracking and auditory probe counting tasks are developed (see
Table I) and stored in server D as the long-term procedure
knowledge of the task in the model. For the tracking task,
first, the model watches for the spatial difference between the
cursor and the target. Second, if there is a difference, the model
computes the expected movement time (1P, 1U, and 2U
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conditions) and expected movement direction (1U and 2U
conditions) (with an increase in tracking difficulty, the number
of cycles in computation increases). Third, the model executes
the movement to move the joystick in the expected movement
direction and time. Similarly, in the auditory probe counting
task, the model increases the value of a counter if it receives a
target low-pitch tone from the auditory perceptual subnetwork.
All of these steps or operators are defined in a task-independent
manner, with the task-specific information being treated as
their parameters.

More importantly, one of the unique features of QN-MHP
in modeling concurrent tasks is that the entities representing
the information of the two tasks can be processed in the
network concurrently, and multitask performance emerges as
the behavior of multiple streams of information flowing through
a network without writing another program to either interleave
two-task procedures into a serial program or control the two-
task procedure with an executive control [61].

In addition, to define the joystick with which the QN-MHP
interacts, a software module called m-hJOYSTICK is imple-
mented to represent the joystick in the tracking task. This mod-
ule defines the order of control (first or second order), collects
the movement information of the hand server, and transmits
the corresponding position of the cursor on the visual display
which is implemented in a server in the model (see Fig. 2). This
module also computes and records the root-mean-square (rms)
error of the tracking task. Another software module is imple-
mented to represent the speaker which produces the entities of
auditory stimuli and supplies them to the auditory perceptual
subnetwork. Human performance is generated by a natural in-
teraction of the entities of the concurrent tasks being processed
in the network following the task descriptions (see Fig. 2).

IV. SIMULATION RESULTS AND THEIR VALIDATION

By implementing the equations developed in the previous
section into the simulation model (see Appendix I for values
of several parameters in these equations), the simulation results
are obtained and compared with the target experimental results
of Wickens et al. [14].

Fig. 3 shows the simulation results of the rms error of human
performance in comparison with experimental results. The R
square of the model is 0.99, and rms equals 13.24 [comparison
between single and dual tasks, Fig. 3(a)]; the R square is 0.95,
and rms equals 131.6 [comparison among three difficulty levels,
Fig. 3(b)].

The latency and the amplitude of P300 (peak value) are
shown in Figs. 4 and 5, respectively. For the latency, R square =
0.99, and rms = 1; for the amplitude, R square = 0.99,
and rms = 0.39. The P300 amplitudes (peak values) of the
secondary task, as shown in Fig. 5, are smaller in the dual-task
condition than in the single-task condition (R square = 0.99
and rms = 0.39).

Fig. 6 shows a comparison of the real-time change of the
P300 amplitude of the secondary task in the experiment of
Wickens et al. and the simulation results (secondary task only
and dual-task conditions). In the single-task condition (sec-
ondary task only), the R square of the model is 0.93, and rms
equals 1.63; in the concurrent-task condition, the R square of
the model is 0.86, and rms equals 1.66.
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Fig. 4. (Solid lines) P300 latency in the study of Wickens et al. [14] in
comparison with (dashed lines) the queuing network simulation results (single:
secondary task only; dual: concurrent task).
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Fig.5. (Solid lines) P300 amplitude (peak value) in the study of Wickens et al.
[14] in comparison with (dashed lines) the queuing network simulation results
(single: secondary task only; dual: concurrent task).

The change of the P300 amplitude (peak value) of the
secondary task with an increase of tracking difficulty in the
primary task is shown in Fig. 7. The R square of the model
is 0.99, and rms equals 5.86.
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of tracking difficulty in the study of Wickens et al. [14] in comparison with
(dashed lines) the queuing network simulation results.

V. EXTENSION AND APPLICATION OF THE MODEL

Equations developed in this paper can be extended further
to account for other P300 studies in multitasking and can
be used in designing user interface in dual tasks, including
designing the stimuli or representation of multiple tasks on user
interface and determining the maximal difficulty level of a task
in multitasking.

Based on (11), the P300 amplitude of Task 2 can be quanti-
fied into

NE;e1;: Vi

¢
x | NELc — Y Y Ny jiCy jNE, — NEg + 7
m#i all 5/

Ny
drr

¢2 = (k/b)

12)
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If there are only two tasks, (12) can be simplified into

N.
¢2: (k;/b)rﬂi’ NELc— Z Nl,j/Cl,j’NEp_NEO‘i'T

all j/
(k/b)

= - Ny —Z Nl,j/cl’j/NEp-l-NELc—NEo-i-T

all 5/

13)

>any V1,7 Crjr = NE 32150 N1jr C e =
NE,n;N,C1, where N; and C] are the averaged number and
cycle times of entities of Task 1 in the network, respectively
(ny is the number of servers processing entities of Task 1)

Because

k/b), — I
(bz = %(Oﬂ\ﬁ + ﬁ)(—NEpanCl + NE;,c — NEg + T)

=0.76(aN; + 3)(—0.63nN;Cy + NEL¢ — 0.38),

(assuming that 7 = 0 on average). (14)

Similarly
¢ B0y —NE,nsN2C5+NE—NE 15
1= 1( pN2N2Co+NEr,¢ o+7). (15

Equations (14) and (15) can be used to optimize dual-task
performance in various domains. First, because P300 amplitude
is one of the indexes to reflect the resource available for a
task, (14) and (15) can help us identify the critical factors in
maximizing the resource of Tasks 1 and 2 in dual tasks: No,
C1, N1, nq, and NEr¢ to maximize the resource of Task 2;
Ny, Cy, Ny, ng, and NEr,¢ to maximize the resource of Task 1.
Second, to maximize the resource of Task 2, N» and N7 can be
optimized by properly designing the stimuli of the two tasks
according to (14); n; and C; can be reduced by practicing
Task 1. The same logic can also be applied to maximize the
resource to Task 1. Third, (14) and (15) can help us quantify
the maximal difficulty level of a task in multitasking so that
the resource available for the other task is maintained above the
minimal level. In this paper, we focus our discussion on the
following: 1) how to quantify the relation between Ny and Ny
with its implication in designing stimuli in multitasking and
2) how to quantify the maximal difficulty level of a task so that
the resource available for the other task is above the minimal
level.

1) Relation Between No and N1 With Its Implication in
Interface Design in Multitasking: Suppose there is a directly
proportional relation between Ny and Ny

Ny = aN; + 3. (16)

Then

k/b), — N

=0.76(aN7 + (3)(—0.63n1 N1C1 + NEc — 0.38),
(assuming that 7 = 0 on average)

= — 0.487110401]\712
+ (—0.48n18C1 + 0.76aNErc — 0.29) Ny

+0.763(NELc — 0.38). (17)
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In addition, according to the properties in queuing networks,
there is an inversely proportional relation between the difficulty
level of Task 1 (TD;) and Ny, as well as a directly proportional
relation between TD; and C

TD1= —gNi +h,  (9>0; h>ghNy) (18)
TD;=sCi+t,  (s>0; t=0whenC; =0, TD;=0).
(19)

By combining (17)-(19), (17) can be further developed into

Pa= —0.48n10¢s’1g’2TD:11’
+ (0.96hn10¢371g72+0.48nlﬁs’1g’1) TD%
+ (*0.48n1a571972h270.76ag71NELC
+0.29ag ' — 0.48n,8hs 'g ') TD;
+0.76ahg 'NEpc —0.29ahg ™' +0.76 3(NELc —0.38).
(20)

Take partial derivative

9¢a
OTD;

= —1.44n a5 g 2TD?

+ (1.92hnias g7 + 0.96n,8s 'g~ ') TDy
+ (—0.48n1048_1g_2h2 —0.760,g 'NE¢

+0.29ag " — 0.48n1B8hs 'g71). 1)

Based on (21), depending on the value of «, 3, and other
parameters, an increase of Task 1 difficulty level may generate
an increase of ¢, a decrease of ¢s, or no change of ¢ (see
Fig. 8 and Appendix II for equations A)-E) including their
solutions).

Based on the derivation results of (21) in Appendix II, Fig. 9
provides a more intuitive illustration of Conditions 1) and 2)
in Fig. 8, connecting the relation between Ny and N, and the
change of ¢5: 1) If there is an inversely proportional relation
between Ny and N; bar (Np) (e.g., a = —1), the greater
the number of Task 1 (N7) entities on average, the less the
number of Task 2 (T2) entities processed in the network; (21)
predicts an increase of the P300 amplitude (resource) of T2 (see
Condition 1) in Fig. 9); 2) if there is a directly proportional
relation between Ny and N; bar (N;) (e.g., o = 1), the less
number of Task 1 (N;) on average, the less number of Task 2
(T2) entities processed in the network; (21) predicts a decrease
of the P300 amplitude (resource) of T2 (see Condition 2) in
Fig. 9).

The predicted results in Fig. 9 are consistent with the existing
results in ERP studies [65]. In the study of Kramer et al. [65],
when the stimuli of the primary task (T1) and the secondary task
(T2) are integrated into the same stimuli (T1: tracking a moving
object; T2: counting the transitional change of the same moving
object) (“Dual-Task Integrality Condition” in [65, Fig. 1]), the
amplitude of P300 of T2 increases with an increase of the diffi-
culty level of T1. Different from the study of Wickens et al. [14]
in which the stimuli of Tl and T2 are not in the same
object, “the dual-task integrality” condition in the study of
Kramer et al. sets the stimuli of T1 and T2 into the properties
of the same object. In QN-MHP, this setting of the experiment
is represented as using one type of entity (called “shared entity”
here) with different attributes. In other words, one entity carries
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Fig. 9. Effect of the relationship between N2 and N7 on the change of the
P300 amplitude of Task 2 with an increase of the difficulty level of Task 1.
Condition 1): An inverse relation between No and Np produced an increase
¢2 with an increase of the difficulty level of Task 1 (TD;) (e = —1 <T).
Condition 2): A direct relation between No and N1 produced a decrease of ¢2
with an increase of the difficulty level of Task 1 (TD1) (« =1 > T).

the two tasks’ information at the same time, generating parallel
processing in the perceptual subnetwork in the model. When the
difficulty level of T1 increases, the shared entities of T1 and T2
stay for a longer time at Server F to process the information
of T1 (lower value of N;), increasing the number of shared
entities in the other servers in the cognitive subnetwork and the
perceptual subnetwork. Because the shared entities also carry
the information of T2, more information of T2 gets processed
at the same time while the shared entities are waiting longer for
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the service of Server F (higher value of Ns). For explanation
purposes, by inserting the value of other parameters, (13) can
be simplified into

k/b —_
QSQ = (47{-7‘) NQ (—NEpanCl + NELC - NEO + 7')

=0.76N3 (—0.75N1C + 1.62)
=1.215N, — 0.57N, C;.

(22)

In (22), the constant before N5 is greater than that in front
of N;C1; therefore, the value of Ny becomes the major factor
determining the value of ¢2. A higher value of N> in the same
object condition increases the value of ¢s.

In contrast, if the stimuli of T1 and T2 are not set in the same
object (e.g., in [14] or the different object condition in [65]),
they are represented as two types of entities in the network.
When the difficulty level of T1 increases, the entities of T1
spend more time at Server F in the cognitive subnetwork (lower
value of IN}), decreasing the number of entities of T2 receiving
the service of Server F (lower value of N>) and the value of ¢o
[see (22)].

The quantification of the relationship between N2 and N
on the change of the P300 amplitude of Task 2 earlier can
be applied in designing user interfaces in multitasking. First,
based on Figs. 8 and 9 and (13), it is recommended that the
information of T1 and T2 be encoded into the same object
or stimuli, creating the inverse relation between N, and Ny
with an increase of the T1 difficulty level and maximizing the
parallel processing of information of T2 when the processing
of T1 is delayed. Moreover, as long as the derived « is lower
than the threshold (T') derived in Appendix II, an increase
of the T1 difficulty level will increase the value of ¢ as an
indication of the resource available for Task 2; the lower the
value of «, the more resources are available for Task 2. Second,
in circumstances where the stimuli of the two tasks cannot be
set in the same object, one of the focuses of the designer is to
lower the derived « so that its value will be closer to I'; the
higher the value of «, the less resources are available for Task 2
when the difficulty level of Task 1 increases.

To implement this in real user interface design, first, a
similar simulation process described in this paper is needed to
obtain the value of o and other parameters in Appendix II (see
[61], [83], and [84] for a detailed description about how to use
QN-MHP to simulate other tasks). Second, the value of the
threshold (I") can be obtained via equations A)-D) and their
solutions in Appendix II. Third, the original design of user
information can be revised (e.g., integrating the information
of the two tasks in the same object or reducing the distance
between the locations of the two objects belonging to T1 and
T2) until the value of «; is lower than I' in the same object
condition (the lower, the better) or o is closer to I' in the
different object condition (the closer, the better). The same
logic can also be applied to the situation wherein the resource
of Task 1 is to be maximized when the difficulty level of Task 2
increases.

2) Quantification of the Maximal Difficulty Level of a Task
in Multitasking: Equation (17) can also be used to determine
the maximal difficulty level of a task in multitasking. Suppose
a minimal level of resource for task ¢ is needed (for example,
¢; min found by ERP experiments), (17) can be generalized into
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(23) to quantify the maximal difficulty level of the other task
J(TDj max) [see Fig. 10 as an illustration of (23)]

¢; min = —0.48njozs_lg_QTD;?Imx
+ (0.96hnjozs’1g’2 + 0.48njﬁs’1g’1) TD?max
+ (—0.48njasflg’2h2 —0.76ag 'NErc

+0.29ag™" — 0.48n;8hs 'g™") TD; max

+0.76ahg *NELc — 0.29ahg ™
+ 0.763(NELc — 0.38). (23)

For example, in a driving task, suppose T1 is steering a
vehicle on a highway and T2 is operating an in-vehicle device,
and we have obtained the minimal value of ¢1 (1 min) based on
existing ERP experiments in driving. After performing similar
simulation using the current model (see [61], [83], and [84]
for a detailed description on how to use QN-MHP to model
driving and other tasks), users of the model can obtain the
parameter values in (23) except TDg ax. Finally, the maximal
task difficulty level of T2 (TDa2ax) can be obtained via (23);
and it can be used as a guideline to design the user interface of
an in-vehicle device, so that operating this device while, at the
same time, driving will not exceed the “red line” of resource for
the primary driving task.

VI. CONCLUSION

We described a queuing network modeling approach to
model human performance and P300, including its latency,
amplitude, and real-time change of amplitude simultaneously
in dual-task situations. It not only successfully accounts for
one of the major findings in measuring mental workload found
by Wickens et al. but also provides a quantitative explanation
why, in different experimental settings, the P300 amplitude of
a secondary task may either decrease [14] or increase [65] in
dual-task conditions when the difficulty of the primary task is
higher. By quantifying these major findings, QN-MHP also of-
fers a quantitative mechanism with corresponding neurological
support to explain how these ERP phenomena are produced in
the human brain as an attempt to meet requirements both for
engineering applications and biological realism. This queuing
network modeling approach demonstrates its value in describ-
ing and predicting behavioral performance and the important
aspects of the macroscopic electrical brain activities.

In modeling the experimental results of the study of
Wickens et al. [14], the simulation mechanism of the queuing
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network modeling approach is consistent with existing models
of mental workload and the results of other experimental
studies. First, for the conceptual model proposed by Wickens
[22], the queuing network modeling approach finds a potential
neurological basis for the concept of “resource” in Wickens’
model. In a certain period, the amount of NE synthesized in the
brain is constrained by the amount of tyrosine, dopa, and energy
(adenosine triphosphate) in the neurological system [19]. As
the demand for NE by the primary task increases, the available
amount of NE for the secondary task decreases naturally.
This decrease in the available NE produces an increase in the
resistivity of the brain regions and then decreases the amplitude
of P300 measured by the ERP techniques. Second, the modeled
P300 latency [see (11)] is composed of the processing of
entities at the perceptual and cognitive subnetworks, which is
also consistent with Wickens’ model in that the latency of P300
results from the perceptual and cognitive processing activities
before the motor response stage [22].

Another potential contribution of this paper is that the
mathematical equations developed can be extended further to
account for other P300 studies in multitasking with its ap-
plication in multitask user interface design. The extension of
the model is able to account for different patterns of P300 in
different experimental settings, including an increase, decrease,
or no change in P300 when the task difficulty changes. The
computational model can unify several important findings in
P300 studies [14], [65]. In addition, the computational model
can also be used in designing user interface in dual tasks by
determining the degree of information integration of the two
tasks in the same object and setting the maximal task difficulty
level.

The current modeling approach provides a useful connec-
tion between neuron activity, mental workload, and human
performance. It uses both bottom—up and top—down modeling
methods. The quantification of NE in synaptic transmission
in the model is a bottom—up modeling process starting from
microactivities in the brain, whereas the quantification of task
procedures and a task-independent queuing network structure
of brain regions is a top—down modeling. Moreover, the current
model incorporates the NE output of the neural network model
of the LC-NE system [18], offering a useful interface between
neural network and queuing network models.

Aside from its role in connecting neural network with queu-
ing network models, this queuing network model is useful
in predicting mental workload in real-time engineering ap-
plications. First, the consistency between the simulation and
experimental results suggests that this modeling approach is
able to predict mental workload relatively accurately, both in
the temporal dimension, as reflected by the P300 latency, and
in the intensity dimension, as indicated by the P300 amplitude.
This relative sensitivity to the manipulation of the task difficulty
level and the arrival patterns of task information makes the
model useful in engineering applications. For example, many
intelligent or adaptive driver support and warning systems
could benefit from computational workload models for esti-
mating driver workload and proposing actions (e.g., redirecting
messages into a voice mailbox [66]) to prevent traffic accidents
because collecting ERP signals directly in these real-world
systems requires expensive devices. By implementing this com-
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putational model into these systems, driver mental workload
may be estimated more accurately for predicting when the
mental workload may reach a “red-line” level (reflected by
certain P300 amplitude), as well as by how much and for how
long it exceeds that red line.

Second, unlike the traditional mental workload models, the
current modeling approach starts from a task-independent cog-
nitive architecture—QN—-MHP which has successfully modeled
human performance (e.g., reaction time, response accuracy,
and eye movement) of various kinds of tasks. The success of
modeling mental workload significantly extends the coverage
of the model in engineering applications and allows users of
the model to model mental workload and human performance
at the same time.

The current modeling approach has its limitations because
it is the first step to quantify P300 amplitude and latency in
dual-task situations using the queuing network modeling meth-
ods. Research has shown that other substances, e.g., acetyl-
choline, may also affect P300 amplitude [85], [86]; therefore,
the current model—using NE to quantify P300 amplitude—is
only one of the possible approaches to quantify P300 am-
plitude in dual tasks. Moreover, unlike some other modeling
approaches (e.g., Micro-SAINT and IMPRINT) which have
validated their prediction in many real systems and different
task settings, the current modeling approach has not validated
all of the predictions of the model (e.g., the prediction that
a change of task difficulty level may not affect the P300
amplitude).

We are extending the current modeling approach to quantify
other important findings in mental workload research. For
example, by quantifying subnetwork utilizations, the queu-
ing network model is able to predict the subjective mental
workload measured by various workload scales. Overall, the
queuing network modeling approach shows potential as a useful
modeling method to quantify and predict mental workload,
behavioral performance, and electrophysiological phenomena
of the cognitive system.

APPENDIX I
SETTING OF PARAMETERS

Parameter setting in simulation: No free parameter is used
during the simulation process, and all of the values of param-
eters come from the original settings of QN-MHP [61] and
the existing neuroscience studies (see Table II) (free parameter
refers to parameters whose value is adjusted by researchers so
that the modeling results fit the experimental results).

The following are descriptions of the parameter setting in
Table II.

1) NE,: Based on [67, Fig. 5], eight spikes are observed
when the solution of NE was used. The amount of NE
in the solution is 20 pmol, which is multiplied by the
concentration of NE (20/200 = 10%; see [67, p. 113] for
its solution) and the percentage of NE reaching the target
brain (proportion of S4 cell in the brain region (4%);
see [67, Fig. 1]). The estimated NE, = (20/8) * 10%
4% = 0.01 pmol.

2) NEg: According to [69, Fig. 1] (control condition,
NE concentration level within 15 min), the amount of
residual NE left (NEy) left in the presynaptic neurons
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—2.88njas~lg=2

TD; <

=

C) /\C.@m\iﬁﬁfm\fe\w +0.96n18s~1g—1)2 + 5.76n1as1g—2(—0.48n1as " 1g=2h2 — 0.76cg 'NELc + 0.29ag—1 — 0.48n18hs—1g—1)
< 2.88n1as g7 2TD; — (1.92hn1as 1g™2 4+ 0.96n18s g™ 1)
or

D) (1.92hnias tg™2 +0.96n,8s 1g™!) — 2.88n1as g~ 2TD;

> /\Q.@wvsHQmIHmlm +0.96n18s~1g=1)2 +5.76n1as~1g=2(—0.48n1as~1g=2h2 — 0.76cg~'NELc + 0.29ag—1 — 0.48n1B3hs—1g—1)

B(2.77h — 5.53TD;)

a >
—2.77g=1h2? — 4.38sn] 'NEr,c + 1.67sn] ' — 8.3~ 1TD? — 11.06TD; hg~1

=TI (anda>0) (26)

— 1.44n1as~1g72TD? + (1.92hn1as™ g2 +0.96n18s~1g~1)TDy

+ (—0.48n1as g7 2h? — 0.76ag 'NELG + 0.29ag 1 — 0.48n18hs g7 1) =0

—(1.92hn1as 1g=2 4 0.96n18s 1g~ 1) + /\C.@N?&SQ%\H@\M +0.96n18s~1g=1)2 +5.76n1as1g=2(—0.48n1as~1g=2h2 — 0.76cg 'NELc + 0.29ag—1 — 0.48n1Bhs—1g—1)

= TDy = 2

—2.88n1as g~
=
E) (1.92hnias tg™2 +0.96n1 85 19712 + 5.76n1as 1g72(—0.48n1as g7 2h? — 0.7609 ' NELC 4 0.29a9 ™! — 0.48n1 Bhs g™ )

= T.wmzHleﬂmlm,EuH — C.@mbSHQmIHmlm + o.wmﬁ?@.mlymlHLm (27)

B(2.77h — 5.53TD; )

= — — 5 =T (28)
\w.ﬂﬂm\:% — ».wmmﬁﬂ NEic + H.@ﬂmSH — m.wm\:JUH — :.oaHUHE.Q\H

«




WU et al.: QUEUING NETWORK MODELING OF AN INDEX OF MENTAL WORKLOAD

TABLE II
PARAMETERS USED IN SIMULATION

Value
126 ms

Parameter
Tiap, Tiyp

Description Source
Time for auditory or [62]
visual perception (1

cycle is 42 ms at each

server in perceptual

subnetwork)

1 processing cycle time [62]

at servers in cognitive

subnetwork

1 processing cycle time [62]

at servers in motor

subnetwork

Amount of NE needed [68]

for each of those entities

at each processingcycle

at server j

Amount of residual NE [70]
left (NVE,) in presynaptic

neurons

Parameter in Nunez's [65]
equation

Average distance from
the servers as P300
generators to the scalp
Duration that NE [19]
reaches its peak

Average to conduction [71]
time from the LC to

forebrain

LaTigTic Tig Tig 18ms

T Tix Tz Tix 24 ms

NE, 0.01 pmol

NEy 0.166 pmol

kb 18.0

r 5.8cm [20,21]

I 100 ms

NEcond 65 ms

is about 118.6 fmol/ul. Because 1 fmol = 10~* mol
(http://pubs.usgs.gov/of/2004/1392/pdf/ofr20041392.pdf,
accessed on December 12, 2006) and human brain’s
volume is about 1400 ml (i.e., 1.4 % 10° 1), therefore,
NE, = 1186107 % 1.4 % 105 = 166 *« 10™° mol =
0.166 pmol.

3) k/b: Based on [64, Fig. 4], the difference between the
amplitude in control condition and the condition of
10 um of NE that was injected is 275 — 140 = 135 uV.
Therefore, 1 ym of NE produces about 13.5 'V in the
amplitude change of the brain potential

kS SNEr
¢ 47r(b/NEr) (k/8) 47y
13.5 = (k/b)zil => (k/b) for rabbit is = 0.154
mr

where » = 0.1 cm = 0.001 m (based on the radius of bulb
of a rabbit). For human whose brain is 1400 g which is
1400/12 times that of a rabbit, this ratio changed to k /b =
0.154 % (1400/12) = 18.

4) r: Based on measurement data in the figure below (see
Fig. 2 in this paper developed based on [19] and [20]),
the average distance from the servers as P300 generators
(central point of the servers) to the scalp is 5.8 cm.

5) tp:t, is defined as the time interval between the arrival of
information of stimuli at the LC-NE system (¢ = 0) and
the time point when NEp ¢ reaches its peak. Its value is
set based on [18, Fig. 3] (control condition): the duration
of the shadowed area, approximately 100 ms.

6) NE onq: NE¢ong is set directly based on the sentence in
[70, p. 411]: “LC impulses on reach the frontal cortex is
60-70 ms.”
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APPENDIX II
THREE CONDITIONS IN RELATING THE DIFFICULTY
LEVEL OF TASK 1 AND THE CHANGE OF ¢9

Condition 1) ((0¢2)/(0TD;)) > 0 (see (24), shown at the
previous page).

Solving equations A) and B), we have (25),
shown at the previous page. If o and 3 satisfy
(25) [i.e., equations A) and B)] at the same
time, i.e., « is lower than the threshold (T"), an
increase of Task 1 difficulty level will increase
the value of ¢s.

((0¢2)/(0TD1)) < 0 (see (26), shown at the
previous page). If a and ( satisfy (26), i.e., «
is higher than the threshold (I"), an increase of
Task 1 difficulty level will decrease the value
of (]52.

((092)/(0TDy)) = 0 (see (27), shown at the
previous page). Thus, (see (28), shown at the
previous page). If « and [ satisfy (28), an
increase of Task 1 difficulty level will not affect
the value of ¢s.

Condition 2)

Condition 3)
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