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Abstract—Traffic control agencies (TCAs), including police of-
ficers, firefighters, or other traffic law enforcement officers, can
override automatic traffic signal control and manually control
the traffic at an intersection. TCA-based traffic signal control
is crucial to mitigate nonrecurrent traffic congestion caused by
planned and unplanned events. Understanding and predicting
TCA behaviors is significant to optimize event traffic management
and operations. In this paper, we propose a pressure-based human
behavior model to mimic TCA’s decision-making behavior. The
model calculates TCA’s pressure based on two attributes: vehicle
and pedestrian queue dynamics and the red time duration for
each phase. When TCA’s pressure on each phase meet certain
criteria and the minimal green is satisfied, TCA will terminate
the current phase and switch to another phase. In order to
study TCA behavior systematically, we first build a manual signal
control simulator based on a microscopic traffic simulation tool.
Supported by the manual control simulator, a series of human
subject experiments have been conducted with real-world TCAs.
Experiment data are divided into training data and test data.
The proposed behavior model is then calibrated by training data,
and the model is validated by both offline segment-based phase
and duration prediction and online VISSIM-based simulation.
Further, we test the model with videotaped TCA behavior data
at a real-world intersection. Both validation results support the
effectiveness of proposed behavior model.

Index Terms—Human behavior modeling, multimodal event
traffic, traffic signal control.

I. INTRODUCTION

T RAFFIC congestions occur frequently, which affect daily
life and pose all kinds of problems and challenges. Allevi-

ation of traffic congestions not only improves traffic safety and
efficiencies but also reduces environmental pollution.

Traffic congestions easily arise during large planned events
(e.g., sporting games, parades, and conferences, etc.), or un-
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planned events (e.g., traffic incidents, natural disasters, in-
clement weather, and facility problems, etc.). Such events often
result in significant non-recurrent congestion due to unexpected
high demand or reduced network capacity [1]. Despite the fact
that there exists advanced signal control technology, the addi-
tional benefit brought by those technologies is limited during
periods of non-recurrent congestion, since most of them are not
designed for the event-based operations. Therefore, properly
managing traffic under event occurrence becomes challenging
for traffic safety and mobility.

When traffic over-saturates the network, human intervention
by traffic control agency (TCA) is believed to be a very effective
method to handle multi-modal traffic conditions [2]. TCAs
usually consist of police officers, firefighters, parking enforce-
ment agencies, or temporally hired personnel. The primary
objective of manual traffic control by TCAs is to move vehicles
and pedestrians safely and expeditiously through or around
special event sites while protecting on-site personnel and equip-
ment. Experienced TCAs can effectively balance queue length,
increase network throughput, and prevent pedestrian-vehicle
crashes. Therefore, manual traffic control performed by TCAs
serves as a common approach to handle severe event traffic
congestions. Correctly deploying TCAs in the network to direct
traffic movements can significantly help mitigate traffic conges-
tions. There are two typical methods to manually control traffic,
either using hand signal or a pigtail manual switch in the signal
controller [3]. The method by using hand signal allows TCAs
to adjust both phase sequences and phase green time; while
the manual switch in the controller can only adjust the green
time in each phase but not the phase sequence. Without loss of
generality, we focus on modeling hand signal control performed
by onsite TCAs.

Large behavioral heterogeneity exists in TCA’s control, due
to individual differences and lack of systematic training. Un-
derstanding and predicting TCAs’ behaviors are significant to
event traffic management and operations. With a well-calibrated
human behavior model, one may be able to simulate the manned
intersections with different traffic scenarios and locations. Such
human operator based simulation can evaluate the event-based
traffic control plans with different TCA deployment strategies.
The behavior model could also be applied for TCA training and
assisting decision making for TCA deployment in a compli-
cated network.

In this paper, our contributions are: (i) build a manual sig-
nal control simulator based on a popular microscopic traffic
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simulation tool-VISSIM, (ii) propose a pressure-based model
to mimic TCA’s decision making behavior, considering multi-
modal traffic dynamics, including passenger cars and pedestri-
ans, and (iii) validate the effectiveness of the proposed model by
data collected from both human subject experiments and field
experiments.

The following sections are organized as follows. Section II
reviews existing related studies. Section III depicts the overall
framework of TCA control behavior modeling. Section IV
presents the pressure-based human behavior modeling. Human
subject experiments for manual traffic control are described in
details in Section V. Calibration and validation of proposed
model using experiments data are presented in Section VI,
respectively. Finally, Section VII provides concluding remarks,
discussion and future work.

II. LITERATURE REVIEW

It has long been recognized that non-recurring events can
cause at least half of total traffic congestion [4]. In terms
of traffic congestion management, among all the solutions,
traffic signal control is commonly considered as an important
and effective method. Over years, a large amount of effort
has already been invested in studying how to alleviate traffic
congestion with traffic signal control. The literature on adaptive
traffic signal control, multi-modal traffic signal control, traffic
signal control with artificial intelligence, manual signal control,
and human control behavior modeling, bears relevance to this
research.

Nowadays, the most advanced and sophisticated traffic signal
control systems are adaptive traffic signal control systems.
Representative adaptive traffic signal control systems, includ-
ing SCOOT [5], SCATS [6], RHODES [7], [8], UTOPIA
[9] and PRODYN [10], have been developed in the past few
decades. However, various practical limitations have restricted
the practicability of adaptive signal control systems. Less than
100 out of 300,000 traffic signals in U.S are implemented
with adaptive signal control systems [11], [12]. Further, it is
well known that adaptive signal control systems still cannot
manage oversaturated traffic, which commonly arises during
events.

Recently, due to the advent of advanced communication
technologies, multi-modal traffic signal control with Connected
Vehicles has received attentions [13], [14]. A multi-modal sig-
nal control formulation called PAMSCOD, which relies only on
significant level penetration of Vehicle-to-Infrastructure (V2I)
communications, is proposed to consider priorities of bus,
pedestrian and passenger cars [15]. This formulation is further
revised to be more practical by assuming only traffic modes
with priority (such as emergency vehicles, buses, and pedes-
trians) are equipped with V2I communication systems [16].
There also exist other signal priority control strategies [17],
[18]. However, the previous work in multi-modal priority signal
control did not directly address the specific issues during event
occurrences, such as a massive amount of pedestrians, saturated
traffic conditions, and so on.

Traffic signal control with artificial intelligence is another
emerging research topic. With the rapid development of com-

puter technology, artificial intelligent techniques, such as fuzzy
logic [19], [20], neural networks [21], [22], evolutionary
algorithms [23], [24], reinforcement learning [25], [26] and
multi-agent technology [27], [28] are applied and expected
to play important roles in more complicated traffic control
systems. The results showed that intelligent control system has
better performance and is more cost effective compared to a
conventional fixed-time control system [29]. An agent-based
approach is suitable to the traffic system because of its geo-
graphically distributed nature. It allows distributed subsystems
collaborating with each other to perform traffic control and
management based on real-time traffic conditions [30]. Several
artificial intelligence based models, such as a multi-layer neural
network model and a Kohonen Feature Map (KFM) method,
were shown to be effective to classify traffic situations and
useful to optimize signal timings so as to minimize the total
weighted sum of delay time and stop frequencies compared
with those by a conventional method [31]. Other studies lever-
age recent developments in parallel control and management
for traffic control, which explicitly incorporates engineering
and social complexities for modeling a large-scale system [32].
However, the existing traffic signal control methods with ar-
tificial intelligence neither are validated by real-world TCA’s
control experiences, nor can accommodate unexpected event
traffic which contains multiple traffic modes and causes non-
recurrent congestions.

Compared to automatic signal control, manual signal control
is able to improve the management of congested signalized
intersections due to its use of long cycle times, which is
suggested to be implemented as part of automatic control [2].
The handbook of managing special events [1], emphasizes that
traffic control officers have a large role in maximizing intersec-
tion operating efficiency. Recently, experiments of Hardware-
in-the-Loop Simulation (HILS) were conducted to evaluate
manual traffic control performance under oversaturated inter-
section [33], which drew the conclusion that manual traffic
control had the best performance results among the proposed
strategies at an oversaturated intersection. This conclusion is
further confirmed in authors’ prior work [3]. They developed
a performance index based on TCAs’ performance with both
throughputs and delays. It was shown that manual traffic control
can significantly (by roughly 30%) improve the control perfor-
mance compared with state-of-practice actuated signal control.

There have been numerous attempts at modeling human
behaviors based on obtained behavior data [34]–[37]. The sim-
ulation of human performance for analysis and prediction has
taken the form of probabilistic models of cognitive processes in
train control system modeling [38] and air traffic management
[39]. Intelligent Agent-Based Model for Policy Analysis of
Collaborative (IMPACT), which is also a simulation model, was
used to capture the behavioral complexity of human decision-
making in traffic flow management operations when weather
disrupts airline schedules [40].

However, very few of previous studies have focused on mod-
eling manual road traffic control behavior. To better improve
event traffic management and operations, it is essential to model
TCA traffic control behaviors and understand how they make
decisions under different traffic conditions.
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Fig. 1. Overall flowchart of TCA control behavior modeling.

III. OVERVIEW OF PROPOSED METHODOLOGY

In this paper, TCA control behavior modeling consists of
four stages, illustrated in Fig. 1. First, we propose a pressure-
based human behavior model. Second, human-based simulation
experiments are conducted to record TCAs’ manual traffic
control behavior. Third, a part of the data will be selected as
training data to calibrate model parameters while the other part
of the data will be test data applied to offline validation of the
model in the fourth stage. The proposed pressure-based model
is validated with both offline segment-based phase and duration
prediction and online VISSIM-based simulation.

IV. TCA TRAFFIC CONTROL BEHAVIOR MODELING

A. Pressure-Based Human Behavior Modeling

Consider a possible phase p ∈ P , where P denotes the set
of all possible phases including vehicle and pedestrian phases
in an intersection. We assume that TCAs are aware of queue
length and phase duration for each phase p at the intersection.
TCAs carry out intersection control to serve vehicles or people
waiting behind stop bar. Therefore, we consider they have a
sense of obligation or pressure to provide “green” as a type of
service. The pressure received from an approach depends on the
total waiting time perceived [41]. Let Sp denote the TCA’s pres-
sure associated to the phase p. In this paper, TCA’s pressure is
associated with two attributes: phase queue information (Qp),
the phase red time (T p). For timing phases, we set T p equal
to zero. Note that all the variables presented above are human
perceived data, not the true data. We assume that TCAs can
obtain accurate T p information (e.g., through stop watch), but
not accurate queue information. Therefore, we conduct a series
of small human subject experiments to build the regression
relationship between human interpreted queue information (y)
and true queue information (x), presented in Appendix.

In order to combine the metrics reflecting both attributes
in a single expression, we normalize both attributes using a
genetic function, γ(ap), where a ∈ {Q,T}. The attribute, ap,
is divided by the maximal attribute across all phases. Thus the
attributes can be transformed into range [0, 1] and compared
among phases. γ(ap) is defined as follows:

γ(ap) =
ap

maxp∈P {ap}
. (1)

If phase p is composed of both pedestrian and vehicle traffic,
a weight wped is assigned to pedestrian traffic. And then the
genetic function will be modified as

γ(ap) =
ap

maxp1,p2∈P
{
ap1, wpeda

p2

ped

} (2)

where p1, p2 are vehicle phases and pedestrian phases, respec-
tively. And aped represents the attributes of pedestrians. In this
paper, we do not assign a particular weight for buses because
TCAs usually treat buses as long passenger cars in many
cases [3]. However, bus length has been taken into account in
calculating the total queue length.

For each time step t, for phase p ∈ P , phase queue infor-
mation is Qp

t and the phase red time is T p
t .Given normalized

information, the approach defines the pressure score for phase p
as a nonlinear combination of γ(Qt) and γ(Tt) as shown below:

S(p) = wq∗
[
γ (Qp

n) + γ (Qp
l ) + γ (Qp

r)

3

]2

+ wt ∗ [γ(T p)]2

(3)

where wq and wt are TCA specific weights for queue length
and red time, respectively, which can be calibrated from TCA
experiments. The queue information is represented by three
variables, number of vehicles/pedestrians in the queue (Qp

n),
queue length in distance (Qp

l ) and queue-to-capacity ratio
(Qp

r). Note that each TCA has its own set of weights.

B. Rule-Based TCA Signal Control

Pressure can be categorized into green pressure and red
pressure according to signal status. Pressure under current
timing phases is denoted as green pressure. Similarly, pressure
for current red phases is identified as red pressure. We assume
the pressure for timing phases keeps decreasing since queue
is discharging, whereas the pressure for other phases keeps
increasing since queue is forming. The process of TCA decision
making on phase termination and switch can be depicted as
four sub-processes: 1) check if any red pressure is high enough;
2) check if any green pressure is low enough; 3) check if
the minimal green is satisfied; 4) check if the maximal green
is violated. We can describe these sub-processes using the
following four rules:

1) Red-to-Green Rule: Red-to-green rule applies to red
phases p at each time step. This rule is to compare the pressure
of current red phase spt with its red-to-green threshold spr2g .

If spt ≥ spr2g , then current red phase p will be the potential
phase that would be changed to green at next time step.
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2) Green-to-Red Rule: Green-to-red rule applies to green
phases p at each time step. This rule is to compare the pressure
of current green phase spt with its green-to-red threshold spg2r.

If spt ≤ spg2r, then current green phase is allowed to be
changed to red at next time step. Note that both spr2gand spg2r
are to be determined by training data.

3) MinGreen Rule: MinGreen rule also applies to green
phases at each time step. This rule enforces that the green
duration of each green phase should reach minimum green time
to ensure safety.

4) MaxGreen Rule: Under oversaturated traffic condition, it
is difficult to satisfy Green-to-red rule due to a large amount of
arrivals. Therefore, MaxGreen rule is utilized to replace Green-
to-red rule for green phases. We set a maximal green time
for each phase. The MaxGreen rule is satisfied when the total
amount of green time exceeds the maximal green time. Selected
red phases will then turn green, and queues in corresponding
phases will be discharged. It is worth mentioning that maximal
green times are usually determined according to the congestion
level as well as the event type. We set these values based on (1)
TCA’s survey and response in the interview, (2) TCA’s actual
performance in each scenario of the experiment. In this paper,
maximal green times are 30∼60 s for left turning movements,
60∼80 s for through traffic on the side road, and 70∼100 s
for through traffic on the main road. However, under some
occasions (e.g., traffic after a football game), the maximal green
time could be set to over 10 minutes due to extreme high
volume of pedestrian flow.

To summarize rule-based TCA decision modeling, we define
the following conditions under both of which a new traffic
control decision, from phase p to phase p′, can be made to
change the phase status:

• Conditions for terminating timing phase p:
◦ Green-to-red rule and MinGreen rule are both

satisfied. Or
◦ MaxGreen rule is satisfied

• Conditions for switching to phase p′:
◦ Red-to-green rule is satisfied.

If one considers dual ring structure (e.g., NEMA 8 phase dual
ring configuration [42]), we will allow the next chosen phase
timing together with its compatible phases.

V. HUMAN SUBJECT EXPERIMENTS FOR MANUAL

TRAFFIC SIGNAL CONTROL

In order to better understand TCA’s behavior, it is essential
to conduct human subject experiments with real-world TCAs.
The details of human subject experiments have been reported
in our previous work [3]. Each experiment consists of two
parts. In the first part, the TCA subjects were asked to take a
15-minutes interview, which covers the basic background (e.g.,
job title, work experiences, and etc.) and general control rules
for manual traffic control under different circumstances, such as
oversaturated conditions, traffic accidents, power outage, con-
struction sites and planned special events. TCAs also reported
their weights, or levels of priority, for different traffic modes.
Given the assumption that ordinary passenger cars have weight

Fig. 2. (a) Components of the MIC-Sim; (b) Simulation interface of the
MIC-Sim.

equal to 1, and emergency vehicles 10, we found that TCAs
tend to assign high weights to pedestrians in groups (average
6.4), and medium weights to buses (average 4.4).

The second part is a simulation-based experiment, which
lasts about 1 hour. The experiment was conducted using the
Manual Intersection Control Simulator (MIC-Sim) shown as
Fig. 2(a). Such human-in-the-loop simulator consists of three
components in a loop: human, the human-traffic control inter-
face and a microscopic traffic simulation tool, called VISSIM
[43]. The traffic conditions, such as signal status, and number
of vehicles in the queue, are displayed on the GUI and will
dynamically change by animation. The traffic data used in
the experiment was collected from a campus football game at
University at Buffalo, scheduled at 7 pm, September 19, 2012.
The game traffic, as shown in Fig. 3(a), was monitored two
hours before its starting time. The prior game inbound traffic,
including buses, pedestrians, and passenger cars were collected.

In the experiment, subjects were asked to apply their own
control experiences to manually control traffic at the intersec-
tion close to the stadium. Once the subject perceives the traffic
condition at the intersection, he or she can manually control the
signal in real-time by clicking the corresponding traffic move-
ment phases in the control panel, depicted in Fig. 2(b) Based on
the geometry of the intersection, we designed a dual ring and
six phase signal control configuration, shown as Fig. 3(b).

There are four scenarios tested in one subject experiment
and each scenario will last 30 minutes in simulation (equivalent
to 10 minutes in wall clock time). Scenario 1 and 2 simulate
the prior-game multi-modal traffic, whereas Scenario 3 and 4
only contains passenger cars and buses. Scenario 3 is equivalent
to Scenario 1 with pedestrian demand removed. Scenario 4
contains an artificial saturated traffic condition.
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Fig. 3. (a) Prior-game inbound traffic counts at the intersection of Millersport
& Amherst Manor on 9/19/2012(bus arrives every 15 minutes); (b) Layout of
the test intersection.

8 experienced TCAs participated in the experiment, and
their control decisions were recorded and presented in Table I.
The number of decisions represents the number of times TCA
switch timing phases. These eight subjects were of different
genders, different job titles and had different years of experi-
ence in traffic control. Out of eight subjects, one was female
while the rest were males. The age of TCA participants varied
from 26 to 57 years old, with average age of 41 years old and
standard deviation of 10 years. On average, TCA participants
had 14 years of related experience, whereas the experiences in
number of years ranged from 2.5 years to 27 years with standard
deviation of 8.5 years. The frequency of TCAs’ manual traffic
control generally varied from 10 to 30 times per year.

Table I summarizes the TCA’s decisions, which are defined
as phase changes. The results include the number of decisions,
mean and standard deviation of the green time under manual
control for each phase. It can be seen from the table that the
number of decisions varies not only among different TCAs but
also among different scenarios. As one can see, more decisions
(shorter phase duration) were made to control scenarios without
pedestrians, which are Scenario 3 and Scenario 4.

VI. CALIBRATION AND VALIDATION OF PROPOSED

TCA BEHAVIOR MODELING

In order to better calibrate the model, we divide the entire
simulation horizon into N decision segments, where N denotes

TABLE I
TCA DECISIONS IN THE EXPERIMENTS

Fig. 4. Description of segments through one experiment.

the total number of decisions. A decision segment is defined
between two decision points, shown as Fig. 4. As depicted in
Fig. 4. tdeci is the decision time point of the ith decision at which
TCA changes the timing phase from one pair to the other. For
example, during segment 1, the green phases are phase 2 and 6.
At tdec1 , TCA decides to change green phases to phase 3 and 7,
which means the segment 1 is defined from = 0 to tdec1 . Thus
segments are divided by TCA’s decision time points. For each
decision segment, the starting time, the ending time, current
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green phases and current red phases are recorded to further
analyze their manual control behavior.

A. Model Calibration

TCA’s profile data, traffic conditions (e.g., multi-modal traf-
fic demand, and event characteristics) and performance data
were obtained in previous manual traffic control experiment.
A portion, 60%, of this experimental data will be randomly
selected as training data set, Mtraining and then utilized to
calibrate the parameters in the model. The rest 40% of the data
will be used to validate the model as test data set, Mtest. The
performance of the pressure-based decision model is given by
two kinds of errors, e1 and e2. e1 (in percentage) measures the
portion of incorrectly predicted next timing phases, whereas
e2 (in seconds) measures the mean absolute deviation (MAD)
between predicted and actual phase duration. Therefore, the
smaller e1 and e2, the more accurate the proposed model will
be. e1 is defined as follows:

e1 =
ne

ntotal
(4)

where ne is the number of incorrectly predicted timing phases,
and ntotal is the total number of selected timing phases in each
experiment horizon. e2 is corresponding to the time points when
the decisions are made, defined as follows:

e2 =

∑
i∈M |tpi − tai |

|M | (5)

where M is the set of decisions made by a TCA in the cor-
responding experiment, tpi is the predicted phase duration by
the model and tai is the actual phase duration of ith decision
segment.

Due to a small number of unknown parameters, we develop
an exhaustive search algorithm to calibrate proposed pressure-
based model. The search algorithm aims to find minimal errors
by adjusting parameters wq , wt and wped.

Let Nq be the number of possible choices for wq , Nt for wt,
and Nped for wped, respectively. K stands for the total number
of possible combinations of wq , wt and wped. Thus K is equal
to Nq ∗Nt ∗Nped. The main steps of the search algorithm are
presented in Fig. 5. The time step for the experiment is set to be
1 second.

Parameters for each subject are aggregated by scenarios.
Scenarios 1 and 2, which include pedestrians, cars and
buses, have the same parameters for each subject. Meanwhile,
scenarios 3 and 4 have the same parameters since both of
them include only cars and buses. The calibrated parameters
for experiments are shown in the following Table II.

B. Offline Model Validation

We develop two validation methods: offline validation and
online validation. The major differences between offline vali-
dation and online validation are listed as follows:

• Validation levels: Offline validation focuses on each de-
cision segment, whereas online validation considers the
entire simulation horizon.

Fig. 5. Search algorithm for calibrating parameters.

TABLE II
CALIBRATED PARAMETERS AND OFFLINE VALIDATION RESULTS

• Validation measures: Offline validation examines only by
the number and duration of next timing phases. However,
online validation explores not only the phase decisions
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but also the simulation outcomes (e.g., delay, number of
stops, etc.).

• Validation methods: Offline validation is conducted by
offline calculation, whereas online validation is conducted
with VISSIM online simulation.

In the stage of offline validation, the calibrated models are
fed with test data to obtain e1 and e2. Table II reports the
prediction errors for eight subjects who participated in the
previous simulation experiments of four different scenarios
with corresponding performance index (PI), which is positively
related to TCA’s control performance [3].

Some values are “N/A” because the corresponding TCA did
not correctly operate the simulator during the experiment. One
can see from the table that most of e1, which is the rate of
incorrectly predicted phases, are below 0.2, and the smallest
value is 0.03 which means the accuracy of choosing next
timing phases can be up to 97%. And the average accuracy
of choosing next time phases is 91%. In general, e2 gives an
acceptable result with average deviation 9.2 seconds among
different cases. e2 in non-pedestrian scenarios (Scenario 3 and
Scenario 4 with average error 11.45 seconds) is much higher
than multi-modal scenarios (Scenario 1 and Scenario 2 with
average error 6.78 seconds). This could be explained by the
fact that TCA’s control behavior with pedestrian involved traffic
varies more and is more difficult to be predicted.

For scenario 1 and 2, it is shown in the table that the
calibrated pedestrian weights, wped, display only small fluc-
tuations, which indicates TCAs gave similar priority to the
pedestrians. Moreover, those TCAs who gave more weights to
queue information, wq , turn out to be the ones with high PI
values, including E, F and G. This indicates that TCAs who paid
more attention to queue information performed manual traffic
control better. In other words, they were more responsive to the
traffic conditions. Since scenario 3 and 4 contain either light or
heavy traffic, the weights assigned for phase red time wt are
typically higher than that of queue information wq . Therefore,
TCAs manual traffic control manner for these two scenarios is
less responsive to queue information.

Fig. 6 represents the relevance between PI and phase ac-
curacy of each experiment. There is no strong relationship
between model accuracy and PI. It is shown in the figure that
the next timing phases can be predicted with 80% accuracy for
different TCAs. That means the proposed model can adapt to
mimic the behavior of both “good” TCAs and “bad” TCAs.

C. Online Model Validation

Besides offline validation, it is essential to conduct online
manual traffic control to validate proposed model. Since TCA
intersection control is a rare event, and there are no duplicate
experiments in the same location with the same traffic demand.
Therefore, it is very challenging to use field control data to sys-
tematically model TCAs’ behavior. Moreover, one may hardly
get entire intersection queue information, including number
of vehicles in the queue and queue length, from videotaping
TCAs’ control behavior, especially under oversaturated event
traffic conditions.

Fig. 6. Accuracy versus PI of offline model validation.

Fig. 7. Java-VISSIM simulation flowchart.

Therefore, validation with microscopic simulation is con-
sidered to be an effective way to validate the model. The
simulation-based validation is also built on VISSIM with COM
(Component Object Model) technologies and Java, shown as
Fig. 7. The major difference between simulation-based valida-
tion and MIC-Sim is that, the pressure-based model, instead
of a real TCA, will make decisions by taking advantage of
all captured traffic information in the simulation. Calibrated
parameters and thresholds, shown in Table II, will be further
applied in the simulation scenarios, which are identical with
the scenarios defined in TCA experiments.

Simulation-based validation is conducted for each experi-
ment with corresponding parameters. The result of the simu-
lations is presented by the following two types of attributes.
One type is traffic performance-related attributes, which include
average delay time per vehicle, average number of stops per
vehicle, average speed, network throughput, and total travel
time. The other type is phase related attributes, which include
green time allocation percentages of different phases.

The performance of online validation is evaluated by average
percentage error (APE) of each attribute, ei3

ei3 =
(vpi − vai )

vai
× 100% (6)

where vai is the value of ith attribute in the TCA experiment,
and vpi is the value of the same attribute predicted by proposed
model in online simulation.

The fluctuation of phase pressure is illustrated as shown in
following Fig. 8.
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Fig. 8. (a), (b), (c) Pressure for Phase 4, Phase 6 and Phase 7 during the online
simulation of Scenario 2, respectively.

Fig. 8 illustrates the change of pressure in Phase 4, Phase 6
and Phase 7 during the simulation of Scenario 2. It is clearly
shown that the pressure increases when the phase is currently
red and then drops sharply after the phase turns green. The
top reference line represents sr2g , and the lower reference line
sg2r. One may notice that s4g2r is equal to 0, whereas s6g2r and
s7g2r are positive. Such phenomenon indicates that TCA tends to
clear the queue on the main street (Phase 4) before terminating
the current green. However, under the same situation, they may
keep some residual queue for the minor street (Phase 6) and left
turns (Phase 7). Moreover, left turn phases usually has low red-

TABLE III
COMPARISONS OF ONLINE VISSIM PERFORMANCE INDICES IN APE

BETWEEN PRESSURE-BASED MODELS AND TCA EXPERIMENTS

to-green pressure threshold (s7r2g), compared with the ones in
through phases (s4r2g and s6r2g).

Table III summarizes the detailed comparisons in ei3 between
the pressure-based model and TCA experiments in different
attributes collected in VISSIM.

The positive values in the table indicate that the overesti-
mated value of the corresponding attribute in the simulation
compared to that in the experiment. Similarly, the negative
values indicate underestimation. Overall, the results from on-
line simulations are close to those of TCA experiments. It is
observed again that TCA’s behavior under vehicle-pedestrian
mixed traffic is more difficult to predict than under only ve-
hicular traffic. For Scenario 1 and 2 (with pedestrian traffic),
average delay time per vehicle is observed to clearly increase
in the online simulation whereas other traffic attributes change
slightly. For scenarios 3 and 4 (without pedestrian traffic),
average delay time per vehicle, total travel time, and the rest
of traffic attributes turn out to remain almost the same, within
10% difference, as those in the TCA experiments.

Moreover, the percentage errors of green time allocation vary
from one scenario to the other and also from one phase to the
other. In Scenarios 1 and 2, more green time is allocated to
phase 2 and 6, which has a large number of pedestrians in-
volved. It may be suggested by the reason that proposed offline
calibration model overestimates both red-to-green threshold
sr2g and green-to-red thresholds, sg2r. In Scenarios 3 and 4,
more green time is allocated to left turning phase 3 and 7. This
may be because the red-to-green thresholds, sr2g , as well as
the green-to-red thresholds, sg2r, for left turning phases are
underestimated than those of other phases, which makes phase
3 and 7 easier to switch from red to green but more difficult to
change from green to red.

VII. FIELD EXPERIMENTS

To further validate proposed model, TCA’s control behav-
ior has been videotaped by two cameras simultaneously at a
real-world intersection Abott Rd. and Southwestern Blvd. at
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Fig. 9. Multi-modal post-game traffic during peak hour in Bills game on
October 13, 2013.

Buffalo, NY, U.S. during Buffalo Bills Football Game on
October 13, 2013. The total number of attendees for that game
is around 68,000. This study focuses on post-game traffic,
which consists of a huge volume of mixed pedestrian and
vehicular traffic. The peak hour traffic diagram at Abott and
Southwestern is presented in Fig. 9. As one can see, the pedes-
trian demand is much higher than vehicular demand. Therefore,
in addition to vehicular phases 1–8, we defined separate phases
9–12, exclusively for pedestrians.

Total 1.5 hour video data has been collected. We treated
first-hour data as training data and the last half hour as test
data. In order to obtain high-resolution decision segments, we
discretized time horizon into 10 second intervals, during which
queue length, red times and timing phases have been recorded
for each phase, respectively. The model aims to predict the
next interval’s timing phases based on the queue length, red
time, and four different rules during the current interval. Due
to defined high-resolution decision segments, we only examine
the performance results for e1. Out of 180 decision intervals,
the model correctly predicts the timing phases for 140 in-
tervals, with e1 equal to 0.22. Therefore, the results indicate
that the model can produce good accuracy in prediction of
TCA’s decision making. Note that the shortcoming of field
experiment is that the traffic scenario is not repeatable. It is
difficult to compare different TCAs’ behavior during the same
traffic conditions.

VIII. DISCUSSION AND CONCLUDING REMARKS

When event traffic over-saturates the network, there exists
much need for understanding the mechanism to efficiently con-
duct network-wide TCA-based manual intersection control, as
well as answering the questions of how to efficiently train TCAs
and where to deploy TCAs. This paper proposes a pressure-
based human behavior model to predict the decision behavior
of manual intersection control for multi-modal traffic given
various traffic conditions. The model is calibrated and validated
by the data from manual traffic control experiments based on
a human-in-the-loop simulator. And it is further validated by
online microscopic traffic simulations with VISSIM and field
videotaped TCA control data. Both validation results show that

the proposed pressure-based human behavior model can predict
the TCAs’ traffic control behavior within acceptable errors.
This proposed model explicitly considers human factors in the
manual intersection control, which has not received adequate
attention.

This study has produced several findings of TCA’s control
behavior:

1) TCAs who show a better traffic control performance are
more responsive to queue information than phase red time.

2) When traffic demand is either light or heavy, TCAs pay
more attention to total waiting time in red phases than
queue information.

3) If pedestrians are involved, more green time, as well as
cycle length, are allocated by TCAs, in order to discharge
people and ensure safety.

4) Under oversaturated traffic conditions, TCAs tend to as-
sign more green time on major roads to reduce overall
traffic delay.

5) TCAs’ tolerance in red-to-green for left turn movements
is lower than through traffic movements.

6) TCAs usually clear the queue on the main approach before
terminating the green phase, whereas they may keep some
residual queues for the side approach or left turns.

With proposed pressure-based human behavior model, one
may be able to develop a human-operator based network traffic
simulator. Such simulator can evaluate the event-based traffic
control plans with different TCA deployment strategies. It
could be a potential useful tool for TCA training and online
TCA deployment under event occurrence to increase the effi-
ciency of proactive event traffic operation.

TCA deployment strategies can be implemented to human-
involved transportation control systems to manage traffic
under unexpected events and allocate resources in an effective
approach. The traffic control systems will not only consider
intersection control and TCA deployment, but also take all other
event control elements, such as event parking, road closures,
emergency access, and trip planning. Further, this control sys-
tem can be extended to decision support systems for urgent
events, such as traffic incidents, inclement weather and natural
disasters, under which prompt TCA deployment and traffic
control response are needed. More real-time traffic information
and coordination will be required to such responsive conditions,
which leads to more challenges and research problems to be
addressed.

APPENDIX

SUBJECTIVE PERCEPTION EXPERIMENTS

FOR TRAFFIC CONDITIONS

In this experiment, human subjects were asked to report
the queue conditions on the pictures. The pictures were taken
under different traffic conditions, including uncongested, con-
gested and nearly saturated conditions. Sample pictures are as
shown in Fig. 10. Three types of queue information, number of
vehicles in the queue, queue length (in meters) and queue-to-
capacity ratio, were taken into consideration in the experiment.
The data collected from the subjects’ experiments was used to
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Fig. 10. Sample pictures used to conduct the experiment.

fit the regression model to describe the relationship between hu-
man perceived queue information and true queue information.

Ten subjects participated in the experiment. After presented
by each picture for 3 seconds, they were asked to report their
perceived queue information for each picture. Such data was ag-
gregated to analyze subjective perception of traffic conditions.

Regression function for number of cars in the queue is shown
as below

yn = −7.686+ 2.219 · xn − 0.040 · x2
n. (a1)

Where xn is the actual number of cars in the queue, yn is the
subjective perception of number of cars in the queue.

Regression function for queue length in distance is presented
as follows:

yl = 22.158+ 0.677 · xl. (a2)

Where xl is the actual queue length, yl is the subjective
perception of queue length.

Regression function for queue-to-capacity ratio is listed as
below

yr = 0.253+ 0.123 · xr + 0.639 · x2
r. (a3)

Where xr is the actual queue-to-capacity ratio, yr is the
subjective perception of queue-to-capacity ratio.

As one can see from Fig. 11, people tend to underestimate
all the queue information, especially under long queues. In
addition, there still exist large variations of people’s subjective
perception. We found people showed much more consistent

Fig. 11. (a) Regression plot of subjective perception of number of cars
in the queue; (b) Regression plot of subjective perception of queue length;
(c) Regression plot of subjective perception of queue-to-capacity ratio.

perception in estimating number of cars in the queue (R2 =
0.79) and queue-to-capacity ratios (R2 = 0.69) than queue
length in distance (R2 = 0.41).
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