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Mathematically modelling the effects of pacing, finger strategies and urgency on numerical typing
performance with queuing network model human processor
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(Received 5 December 2011; final version received 11 May 2012)

Numerical typing is an important perceptual-motor task whose performance may vary with different pacing, finger
strategies and urgency of situations. Queuing network-model human processor (QN-MHP), a computational
architecture, allows performance of perceptual-motor tasks to be modelled mathematically. The current study
enhanced QN-MHP with a top-down control mechanism, a close-loop movement control and a finger-related motor
control mechanism to account for task interference, endpoint reduction, and force deficit, respectively. The model
also incorporated neuromotor noise theory to quantify endpoint variability in typing. The model predictions of
typing speed and accuracy were validated with Lin and Wu’s (2011) experimental results. The resultant root-mean-
squared errors were 3.68% with a correlation of 95.55% for response time, and 35.10% with a correlation of 96.52%
for typing accuracy. The model can be applied to provide optimal speech rates for voice synthesis and keyboard
designs in different numerical typing situations.

Practitioner Summary: An enhanced QN-MHP model was proposed in the study to mathematically account for the
effects of pacing, finger strategies and internalised urgency on numerical typing performance. The model can be used
to provide optimal pacing for voice synthesise systems and suggested optimal numerical keyboard designs under
urgency.

Keywords: cognitive modelling; numerical typing; numerical keyboard design; typing error

1. Introduction

Modelling human performance in skilled perceptual-motor tasks is a long-standing topic that provides many
insights for understanding complex interactions between concurrent perceptual, cognitive and motor processes
(Salthouse 1986, Wu and Liu 2008b). Among those skilled perceptual-motor tasks, typing is of researchers’
particular interest because it consists of complex coordination between perception, cognition and motor process.
Since Newell’s idea of unified theories of cognition that applies a model of a phenomenon to lots of diverse
situations (Newell 1973), many typing models have been proposed to account for phenomena observed in
transcription typing (Rumelhart and Norman 1982, John 1996, John 1998, Wu and Liu 2008b). Those models
well accounted phenomena observed from experienced typists in alphabetical transcription typing, summarised
in Salthouse’s (1986) review, but they ignored typing behaviours on non-alphabetical keys. As stated in
Rumelhart and Norman (1982), varying typing rate in different situations and monitoring accuracy as a result
of speed-accuracy trade-off were not examined in their typing model, and skilled typists may adopt a different
mode of typing due to unfamiliarity with the number keys (Rumelhart and Norman 1982). In particular, skilled
typists can possibly use single finger typing on the numerical keypad. Furthermore, typing tasks can be
conducted by non-experts in a discontinuous manner in general, and their performance can be easily influenced
by external and internal factors such as pacing, response complexity and urgency (Lin and Wu 2011). The
variation of performance in the abovementioned situations, however, was not accounted by previous typing
models. Recently, Leong et al. (2011) attempted to model performance time of data entry on numerical
keyboards by empirical regressions. They successfully developed a performance time model derived from Gan
and Hoffman’s (1988) ballistic movement time model which can predict performance time in a single typing
situation, but their model did not consider varying typing rates in different situations such as urgency and the
model was not able to predict typing errors.

Some limitations in Rumelhart and Norman’s (1982) typing model were addressed later by John’s TYPIST
model (John 1996, 1998); namely, the perceptual encoding of alphabetical strings was accounted by a schedule chart
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with critical path analysis. The TYPIST model covered 19 of 34 common phenomenon observed in alphabetical
transcription and used only one free parameter obtained from regression of experimental data. Recently, queuing
network model human processor (QN-MHP) further covered 32 of 34 phenomena in transcription typing without
free parameters (Wu and Liu 2008b). However, Wu and Liu (2008b) did not model varying typing performance as a
function of pacing or urgency or considered the single finger typing situation. In fact, typing performance can be
easily influenced by external pacing and internal urgency when materials are presented verbally in numerical format,
i.e. typists hear and type numbers. Numerical hear-and-type tasks are common in daily verbal communication
schemes, such as entering contact numbers of friends into cell phones over conversation and inputting numerical
information into computers when talking by phone. Typists are subject to errors because they have to react rapidly
to transient verbal stimuli digit-by-digit without preview which enables them to pre-program and produce successive
keystrokes independently regardless of the speed of input information (Wickens and Hollands 1999). In this
situation, numerical typing performance may be degraded if multiple fingers are used due to uncertainty about
finger to be used (Hutton and Tegally 2005) and well-known finger enslaving effects (Kilbreath and Gandevia 1994,
Zatsiorsky et al. 2000, Li et al. 2004), making single finger typing a feasible, or even preferable, choice for typists
who are not familiar with typing on numerical keyboards. How task demands (e.g. pacing), motor-control strategies
(e.g. single vs. multi-finger typing) and internalised motivations (e.g. urgency) would affect human performance in
numerical typing, however, received relatively less attention than alphabetical typing in both experimental and
modelling literature.

The lack of information about numerical typing is dangerous because critical numerical typing errors occur in
medical management, nuclear control and financial transaction systems (Gough et al. 1983, Arndt et al. 1994, Bohm
et al. 2008, O’Hara et al. 2008). Fatal cases have been reported due to numerical entry errors in a popular drug
delivery system used in hospitals (Thimbleby and Cairns 2010). Numerical typing errors contributed considerably to
input errors in control of nuclear power plants (O’Hara et al. 2008). They also have been thought to be more
problematic than frauds in causing financial loss in transactional systems (Bohm ez al. 2008). The potential threats
posed by numerical typing errors to our lives, safety and finance necessitate understanding humans‘perceptual-
motor skills and limitations in numerical typing context. As an effort towards this end, Lin and Wu (2011)
conducted an experimental study to understand the effects of pacing, finger strategy and urgency on numerical hear-
and-type tasks (Lin and Wu 2011). The experimental task was to type verbally presented, random 9-digit numbers
under different speech rate (defined by inter-digit/inter-stimulus intervals (ISI)) and urgency (speedy responses at
given accuracy level were encouraged by monetary rewards) conditions, with either single (index) finger or multiple
fingers. The results demonstrated somewhat interesting effects of pacing and finger strategy, i.e. fast pacing and
multi-finger typing increased both response time of keystrokes and number of errors committed in each trial, while
urgency produced faster response time at the expense of increasing errors. The fast pacing results were consistent
with empirical evidence in the literature that short ISI created temporal overlap of two consecutive tasks, and dual-
task interference in this dual-task situation might contribute to both slower responses and more errors (Calvo and
Alamo 1987, Pashler 1994a, Pashler and Christian 1994, Ulrich et al. 2006). Furthermore, findings in multi-finger
typing supported negative effects of higher response complexity on reaction time (Schumacher ez al. 1999) and finger
enslaving effects on motor control accuracy (Kilbreath and Gandevia 1994, Zatsiorsky et al. 2000, Li et al. 2004).
The urgency effects were also comparable to findings in rapid aiming tasks based on neuromotor noise theory,
where faster movements as a result of higher muscle co-activations were also noisier, and, thus, caused higher
endpoint variability (Van Gemmert and Van Galen 1997, 1998, Van Galen and Van Huygevoort 2000). However,
the study was not able to confirm the abovementioned internal mechanisms due to lack of biophysiological
measurements.

Provision of a mathematical QN-MHP typing model can help depict how quantitative relationships between
proposed mechanisms in the perceptual-motor system are established based on cortical functions (represented by
servers) and neurological connections (represented by links). Most of the abovementioned typing models are
simulation models, i.e. the solutions of modelled outputs were generated by enumerating possible inputs. However,
for the following reasons, a mathematical model is preferred over a simulation model. First, mathematical
modelling provides precise solutions by analytical methods, while simulation modelling approximates feasible
solutions using numerical methods (Banks ef al. 1996). Second, a mathematical model can be easily implemented
with any software with mathematical formulation capabilities, while a simulation model requires specific language
for particular simulation software and programming skills for flow control and coding (Sokolowski and Banks
2009). Third, mathematical models represent a system’s inputs and outputs explicitly by their mathematical
relationships, but whether the results obtained from simulation models are caused by true interrelationships or
randomness is hard to interpret (Banks 1999).
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The goal of this study is to propose and validate a mathematical model based on the QN-MHP architecture that
can account for effects of pacing, finger strategy and urgency in numerical hear-and-type tasks. Although Lin and
Wu (2011) were not able to confirm the proposed mechanisms by detailed biophysiological measurements, human
performance modelling may provide insights as to the validity of those assumed mechanisms. Should those
mechanisms have caused effects observed in the study, a quantitative model that integrates those mechanisms must
predict similar human behaviours that can be confirmed/validated by the experimental results. The model can be
further used to predict human performance under conditions that were not examined in the experiment, such as
different pacing and keyboard designs. Based on such a model, it may be possible to generalise how humans perform
perceptual-motor skills involving external task demands, inherent motor-control strategies and internalised
motivation.

2. Modelling mechanisms

Section 1 briefly introduced that fast pacing and multi-finger typing increased both response time of keystrokes
and number of errors committed in each trial, while urgency produced faster response time at the expense of
increasing errors in Lin and Wu (2011). They suggested that short ISI may cause temporal overlaps and dual-
task interference between two consecutive keystrokes which resulted in both slower reaction time and more
errors (see Appendix 1 for details). In QN-MHP, the dual-task interference is modelled through competition of
visuospatial attention at Server C, and its resultant increase of background neuromotor noise at Server E.
Furthermore, high response complexity and finger enslaving effects were assumed to contribute to delay of
reaction time and degradation of motor control accuracy, respectively (see Appendix 2 for details). These two
mechanisms are modelled by response selection at Server F and motor-related noise calculated at Server Z,
respectively. Finally, rapid typing under urgency is modelled through different modes of movements to account
for shorter movement time while its increased errors are associated with lack of close-loop motor control (see
Appendix 3 for details). Server G plays an important role in initiating different movement modes at Server Y
and in deactivating Server X’s function to relay somatosensory feedback for error corrections. Implementation
of the abovementioned mechanisms are summarised in Figure 1. The following sections provide an overview of
QN-MHP and details of its enhancements to account for neurological and psychological phenomena found in
numerical typing.

2.1. Overview of queuing network-model human processor (QN-MHP)

To model aforementioned mechanisms in numerical typing under different pacing, response complexity and
motivational factors, the queuing network-model human processor (QN-MHP) was used (Feyen 2002, Liu et al.
2006, Wu and Liu 2008b). The QN-MHP is a computational architecture based on neurological networks in
human brain and body parts. It consists of three subnetworks: perceptual, cognitive and motor (Figure 1). Each
subnetwork is constructed using different servers, which are considered information-processing units in the
brain, and the links among servers, which represent neurological connections between cortical areas. Each
individual server is an abstraction of a brain area with specific functions, and the connections among servers
represent neural pathways among functional brain areas. To illustrate how imperative stimuli are transformed
into desired responses through neurological processes in different functional areas of the brain, transformation
of entities passing through a pathway consisting of servers is used as an analogy in QN-MHP. In the numerical
hear-and type task, the auditory stimuli of the numerical digit firstly arrive at Server 5 one by one as entities
(common auditory processing). The features of the sound are then processed at Server 6 (auditory recognition)
and 7 (auditory location) in parallel. They are finally integrated and recognised at Server 8 (auditory
recognition and location integration). The digit, as meaningful phonological information (entities), is then stored
at Server B (phonological loop) and enters Server C (central executive) for making response-selection. Since
entities represent an anticipated stimulus in Server D (long-term procedural memory) that requires manual
response (keystrokes), Server C routes it to Server F (complex cognitive function) to determine the response.
After the response is selected, the executive command would be sent to Server C again. Because the command
involves manual responses, Server C triggers Server W to retrieve motor programs based on the command.
Those motor programs are then assembled at Server Y and initialised at Server Z, sending out the neural drives
to the right arm, hand and finger (Server 23). The abovementioned processes are represented by the Flow of
Entities in Figure 1. Detailed descriptions of servers, connections and their neurological mapping to functional
brain anatomy can be found elsewhere (Wu and Liu 2008a).
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Figure 1. Enhanced QN-MHP architecture.

2.2. Enhancements of Queuing Network-Model Human Processor (QN-MHP)

Previous modelling work with QN-MHP mainly assumed that information (entities) flows were controlled by
bottom-up mechanisms, i.e. processing time and capacity of servers determined the speed and regulated the flow.
However, the human brain has a top-down control mechanism to facilitate processing of information, especially
when the task involves rewards and multi-tasking (Paus ez al. 1993, Pochon et al. 2002). This control mechanism
was mainly associated with the prefrontal cortex represented by Server C and anterior cingulate cortex (ACC)
represented by Server E, but they were not fully developed in previous versions of QN-MHP. Furthermore, the
close-loop control mechanism was not well explored because performance of experts in alphabetical transcription
typing does not rely on visual corrections (Wu and Liu 2008b). However, reliance on visual feedback is very possible
for novice typists or those typists unfamiliar with the physical layout of the numerical keyboard. Finally, single
finger typing condition was not considered in previous QN-MHP, and the phenomena relevant to well-known finger
enslaving in multi-finger typing (Kilbreath and Gandevia 1994, Zatsiorsky et al. 2000, Li et al. 2004) cannot be
explained by previous models. For non-expert typists, single finger typing is definitely a practical option, and finger-
related motor control strategies may not be optimal when typing with uncertainty in verbal communication context
(Hutton and Tegally 2005). The top-down control mechanism of information flow, close-loop control of movements
based on visual guidance, and finger-related motor control strategy are discussed in the following as essential
enhancements to capture phenomena in numerical hear-and-type tasks.
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2.2.1. Top-down control mechanism to model dual-task interference

Top-down control mechanism was added to QN-MHP by utilising Server C and Server E to account for the dual-
task interference in fast pacing and the increase of neuromotor noise. Fast pacing induced dual-task interference,
resulting in resource competition. Firstly, the competition delayed the execution of saccadic eye movements to
search the second target in two consecutive keystrokes because saccades would interfere with the execution of the
first motor response that needed eye fixation (Adam et al. 2000, Godijn and Theeuwes 2002). Secondly, target
searching is associated with visuospatial attention (Hoffman 1995, Adam et al. 2000), so the competition would raise
the activation level of ACC which is sensitive to attentional demands. The ACC activation level was assumed to
increase background neuromotor noise in response-selection stage which, in turn, increased endpoint variability in
motor execution. In QN-MHP, Server C was responsible for routing information and suppressing automatic
responses to enforce a cognitive bottleneck. During numerical typing in fast pacing, the following stimulus might
arrive at Server B before the on-going key is pressed. In the meantime, the on-going movement was still under
execution and thus needed visual information from fixation. Server C, therefore, would not allow the entities of the
second task to enter into Server F and trigger another saccadic eye movement that interrupts the execution of the
on-going movement. Such a competition also increased noise level calculated at Server E which is sensitive to
resource competition. The connection between Server C and Server E in QN-MHP (Figure 1) signifies that ACC
(Server E) is sensitive to resource competition caused by information regulation by prefrontal cortex (Server C).

2.2.2. Close-loop control mechanism to model movement modes

Close-loop control of movements was accounted by the functions of Server G, Server Y and Server X to implement
different movement modes under urgency. In urgent condition where monetary rewards were applied to encourage
fast responses, a different goal in which speedy reactions outweighed accuracy would be supposedly adopted due to
activation of specific cortical areas that are sensitive to the context value of tasks (Pochon ez a/. 2002, Williams ez al.
2004). In QN-MHP, such a ‘speedy’ goal is initiated by Server G which works closely with Server E and Server C to
assure the achievement of the goal. When there is no urgency, the somatosensory cortex represented by Server X can
send afferent copies of motor executions from the primary motor cortex (Server Z) and sensory information from
body parts (e.g. eyes) to the supplementary motor arca (SMA) and pre-SMA (Server Y) so that corrective
movements can be made (close-loop mode). This on-line control mechanism was also supported by cortical
representations of movement accuracy in neurological research (Gomez et al. 2000). However, the feedback loop of
Server 21/24 > Server X - Server Y = Server Z (Figure 1) would be deactivated through the connection from
Server C to server Y when the speedy goal is initiated by Server G in urgent condition. The iterative corrections
(Crossman and Goodeve 1983) are, thus, no longer possible, and the open-loop mode movements increase endpoint
variability, despite their shorter movement time.

2.2.3. Finger-related motor control strategy to model multi-finger typing

Finger-related motor control strategy is associated with response-selection at Server F and motoric activation at
Server Z (Figure 1). As suggested by Rumelhart and Norman (1982), typists may adopt different typing strategies on
unfamiliar numerical keyboards. When single finger is used, the response selection at Server F is less complex
because there is no uncertainty about which finger to be used. In multi-finger typing, however, the reaction time
should increase due to an additional cognitive cycle needed at Server F to choose from more stimulus-response (S-
R) pairs (Schumacher et al. 1999, Schedlbauer 2006). Furthermore, finger enslaving effects are expected to produce
force deficit when multiple fingers are simultaneously recruited (Latash et al. 2002), and more motor units were
assumed to be recruited at Server Z (the primary motor cortex) to compensate for this deficit (Hager-Ross and
Schieber 2000). Since the signal dependent neuromotor noise was proportional to motoric activation level and the
extent of neuromotor noise increased endpoint variability (Van Beers e al. 2004), multi-finger typing is, therefore,
slower and error-prone because of uncertainty (complex response-selection at Server F) and high cortical activation
(noisy neuromotor system).

3. Mathematical formulation of modelling mechanisms

The following sections describe how mathematical equations are formulated based on QN-MHP architecture to
quantify relationships between model inputs and outputs. The model inputs are one continuous variable, ISI (7, in
units of milliseconds), and three discrete variables: order of response (i, representing i response), finger strategy
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(x=0-> single finger typing; o =1-> multi-finger typing) and urgency (f=0-> non-urgent condition; f=1->
urgent condition). The model outputs are two continuous variables: response time to i stimulus in the 9-digit
number (PT;) and number of errors in the j'™ coded condition (see Appendix 4 for the coding of experimental
conditions). Sections 3.1 and 3.2 introduce the modelling of response time and number of errors, respectively.

3.1. Modelling response time of numerical typing

The nature of numerical hear-and-type tasks is a combination of choice reactions and rapid aiming tasks. A typist
needs to decide which key to press based on the auditory stimulus and choose a proper finger to use in the case of
multi-finger typing. The response selection is a choice reaction rather than a simple reaction because the S-R pair
presents a certain extent of uncertainty (Wickens and Hollands 1999). After the reaction is determined, the typist
needs to press the key with the finger accurately and quickly. The execution is both spatially and temporally
constrained as required in rapid aiming (Meyer et al. 1988). Thus, to model the response time (P7) of this numerical
typing task, factors that affect reaction time (R7) of response selection and movement time (M 7) of rapid aiming
need to be considered. Here, the reaction time (R7) is defined as the temporal lapse from the arrival of the stimulus
(e.g. the arrival of the sound) to the initiation of the corresponding response (e.g. the initiation of the typing
movement). The movement time (MT) is the duration needed to finish the movement. In the case of depression of
keys, the measured response time should include key closure time (Kj): a small portion of time lapse from the touch
of the key to the end of depression. That is:

PT=RT+ MT+ K, (1)

Furthermore, when two consecutive keystrokes are close in time, dual-task interference may cause an extra delay in
reaction time due to a top-down control mechanism to regulate information flow. Such a delay also needs to be
considered in Equation (1). Therefore, the general equation of response time can be modified into:

PTy,, = RT+ DL+ MT+K, (2)

where )
PT; (,, p: Response time to i'™ stimulus with « finger strategy under f8 urgency condition.
DL: Delay time caused by dual-task interference.
RT: Reaction time.
MT: Movement time.
K,: Key-closure Time.

The following demonstrates how each component in Equation (2) is modelled.

3.1.1. Modelling baseline response time in numerical typing

Since numerical typing with single finger under slow pacing without urgent condition is the simplest typing
situation, the response time in this condition PT;, is modelled as baseline. Based on Figure 1 (Flow of Entities),
the common pathway of entities in the numerical hear-and-type tasks in baseline condition can be modelled as:

536/T>83B>COF>C>W>Y>Z>23 (3)

As entities travel through the network, they are processed at different servers on this pathway and gradually
transformed into responses. The time they spend in a particular server is called ‘processing time,” signifying the time
needed for the information to be processed by certain cortical areas. This is compatible with the notion that neuron
assemblies need considerable time to accumulate enough excitatory inputs to reach a state of self-sustaining firing
(Wickens et al. 1994). The routing, however, is relatively quick and the conduction time can be ignored (Feyen
2002). The QN-MHP also assumes that processing time of an individual server is independent of arrivals of entities
and that routing is independent of the state of the system. Therefore, the reaction time of a choice reaction task can
be modelled by summarising processing time of all servers on the route where a stimulus is transformed into a
response. Consequently, the baseline reaction time (R7))) in single finger typing is modelled as:

RT ) =Tup+Tp+Tc+ Troy+ T+ Tw+Ty+ 1y (4)



Downloaded by ["University at Buffalo Libraries'] at 13:38 16 September 2012

Ergonomics 7

where RT)) is the reaction time for single finger typing and T} is the processing time of i'" stimulus at Server k (or
AP signified auditory perception time). All T} are estimated based on parameter settings in QN-MHP (Appendix 5)
except for T (the processing time of i stimulus at Server F for single-finger typing). T'r0) is estimated based on
the processing time for making a keystroke in the numerical typing task at Server F modelled by the Natural GOMS
Language (NGOMSL) (Appendix 6). The resultant RT' o, was 554 ms for single finger typing.

In addition, baseline movement time (MT ) is modelled by Fitt’s law because, under non-urgent condition,
typists are assumed to adopt close-loop controlled movements based on visual guidance to obtain higher movement
accuracy. A Fitts‘law model modified for numerical typing on a calculator is used (Welford 1968, Card et al. 1983):

MT ) = I X log,(D/S. +0.5) (5)

where D and S, are travel distance and effective target size in millimetres based on dimensions of a standard
numerical keyboard in Figure 2. The effective target size (S,) is calculated based on the maximal target width that
can be utilised without touching adjacent keys (Drury and Hoffmann 1992), i.e.:

S,=2KD—S—PS (6)

where KD and S are key distance and key size on a standard numerical keyboard (Figure 2). PS is the average finger
pad size measured in Drury and Hoffman (1992). I, =100 is used as it was suggested in the original study (Card
et al. 1983). Movement time between repetitive digits (e.g. 0 > 0) is assumed to be zero, and the probabilities of
moving between different keys are assumed to be identical. The average M7, to press a key for all possible
combinations of keys (e.g. 1 > 2, 2> 6, etc.) is computed as about 133 ms. The total response time of single finger,
non-urgent typing to the i'" stimulus is thus:

PTi(oo

)= RT(()) + MT(()) + K, =554+ 133 4+ 10 = 697 (ms) (7)

where K; means key-closure time =10 ms (Appendix 5).

3.1.2.  Response time in fast pacing

Based on mechanisms discussed in Section 2 and Appendix 1, reaction time is assumed to delay due to dual-task
interference when two consecutive stimuli arrive closely in time, i.e. a delay of one task to perform another first as a
top-down control mechanism of information flow. The arrival of the following stimulus at Server C is assumed to
delay until the depression of the on-going key because exogenous eye-fixation (at the first target) was found to
inhibit saccades (for the second target) (Godijn and Theeuwes 2002) and the initiation of the second saccade
coincided with the initiation of the second movement in pressing two consecutive buttons (Adam et al. 2000). The
processing time needed at Server C can be calculated by:

TLC = HPTI—I — (1\; + TAP + TB)]/TC—| X Tc; IF PTi_l — (IV -+ TAP + TB) > 0
=T¢; IF PTioy — (I, + Tap+ T) <0

<« @ Finger Tip
72 PS =5.05mm

KD =19.1 mm

< <

Figure 2. Key distance, key size and effective target size on a standard numerical keyboard.
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where PT;_ is the lapse for the previous key to be pressed (PT,=0) and v is the ISI. (Iv+ T 4p+ T) is the lapse
for the entity of the on-going stimulus to leave Server B. The difference PT;_;—(Iv+ T4p+ Tp) yields the least
duration that the current stimulus needs to wait at Server C. The duration is then divided by the cycle time of Server
C (T¢) and rounded up to decide the actual number of the cycle time needed to assure completion of the on-going
keystroke. Therefore, the delay time can be calculated as:

DL[ = T';,C — TC (9)

The reaction time to the first stimulus (R7;, RT4 and RT5) of every 3-digit set should have no delay
(DLy=DL4s= DL,=0) because there was a small blank (no stimulus for 300 ms) in-between every three digits in Lin
and Wu’s (2011) experiment, during which the delay of the previous response was absorbed. The concept of this
delay is depicted in Figure 3.

3.1.3. Response time in multi-finger typing and urgency

In multi-finger typing, one cognitive processing cycle is added to the processing time at Server F due to decision of
finger to use (Appendix 6). That is:

RT(]):TAP+TB—|—Tc—|—TF(1)+Tc—|—TW—|—Ty+TZ=715mS (10)

In urgent situation, ballistic movements are assumed to be adopted instead of visually-guided movements. The
following equation is used to predict ballistic movement time (Gan and Hoffmann 1988):

MTy =A+Bx D (11)

where 4 and B are experimental parameters and D is travel distance in centimetre. Specific values of parameters A
and B for movements of different Fitts’ indices of difficulty are provided in Gan and Hoffman (1988), and travel
distance D from the centre of one numerical key to another can be derived from Figure 2. The resultant M7, is
about 105 ms on average for all possible key combinations on the standard numerical keyboard.

T2, AP+T2,B
. DL (Delay due to dual-task interference)

144ms |TicC
P R

< Iv=500 ms »m
7272 = NN\

T e \ / MT f i: Order of stimulus. T}, signifies processing time of i" stimulus

v Ks at Server k

Tig: Processing Time at Server B (Phonological loop)

4

. TiB E Ti, w T’ c: Processing Time at Server C (Central executive)
' Tir: Processing Time at Server F (Complex cognitive function)
|:| Tic @ Tiy Tiw: Processing Time at Server W (Motor program retrieval)
’ ' Tiy: Processing Time at Server Y (Motor program assembling

and error detection)
Tiz: Processing Time at Server Z (Sending information to body
parts)

E Ti,F

PT1
- -

Figure 3. Delay at Server C.
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In summary, the response time of numerical typing is modelled by the following general equation:
PTy=0

PTiyup = RT() DLi + MT ) + Ks (12)

where

i: notation of response order. i=1 > first response in 9-digit number, and so on.

o: notation of finger strategy. « =0 -> Single finger typing; « =1 -> Multi-finger typing.

p: notation of urgency. f=0 > non-urgent condition; f=1 - urgent condition.

RT ) and RT(;y can be found in Equations (4) and (10) respectively. The calculation of DL; is presented in
Equations (8) and (9), while M Ty, and M T,y are modelled in Equations (5) and (11) respectively. Ks is a constant
(10 ms) adopted from original QN-MHP model and can be found in Appendix 5. The integrated equation for
modelling response time is therefore:

PTiop = [Tap+ Ts+ Tc+ Tpowy + Te+ Tw+ Ty + T4
+{ HW] —1} x Te; IF PTiy —(1),+TAP+TB)>0}

0; IF PTi_y — (I, + Tup + Tp) < 0 (13)
{IM x log,(D/S, + 0.5); IFp = O] X
A+ BxVD;IFB =1 '
The average reaction time for the n- digit number can be calculated accordingly as:
n
PTav = ZPTi(%ﬁ)/n;n =9 in Lin and Wu (2011) (14)
=1

3.2. Modelling errors of numerical typing

The expected number of typing errors is modelled through two mechanisms: neuromotor noise (Van Beers et al.
2004) and open/close-loop control (Figure 1). Van Beers et al. (2004) conducted an experiment in which participants
were asked to perform rapid aiming by their index fingers as quick as possible in different directions without visual
feedback about the hand position. The single finger movements were ballistic in nature under urgency, but no
pacing was presented between two successive movements. The results showed that endpoint variability formed
scatter ellipses oriented with moving directions. They suggested that the endpoint variability was caused by
neuromotor noise and successfully modelled it as a function of neuromotor noise level. The current study
implemented the conceptual neuromotor noise model proposed by Van Beers et al. (2004) at Server E, Z and Server
23 in QN-MHP (Figure 1) and combined it with a visual correction mechanism (Crossman and Goodeve 1983) to
predict the number of errors produced in numerical hear-and-type tasks.

3.2.1. Modelling baseline errors in numerical typing

First of all, the neuromotor noise is assumed to include three components: signal-dependent noise (SDN) calculated
at Server Z, background noise (CN) computed at Server E and temporal noise (TN) accumulated at Server 21
through 25. SDN is scaled by muscle activation level (u) that is proportional to recruitment of motor units in
primary motor cortex, M1 (represented by Server Z in QN-MHP). CN represents background noise in the
neuromotor system during response selection (processing time at Server C and Server F) and is independent of u.
Whenever there is cognitive task interference, more CN is assumed to be added as a function of the duration of
interference (calculated by Server E). Finally, TN signifies noise added during execution of movements and is scaled
by movement time (accumulated during motor execution at Server 21-25). Furthermore, to account for the
observation that movements with a longer duration tended to have a lower peak velocity (and thus lower u), when
TN is scaled by ¢, u should be simultancously scaled by 1/¢* as suggested in Van Beers et al. (2004). That is,

Z42
au—\/ngN-g+k2CN-I2+k2m-c2 (15)
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where ¢, is the extent of SDN added with muscle activation level u; I was an interference index (see Equation
(28)) accounting for the relative extent of the dual-task interference in background noise (CN). ¢ is the extent
of TN which accumulates as movement time increases. kspy, kcy and kzy are experimental constants
for weighting three components. They were set to the values (Appendix 5) as provided in Van Beers et al.
(2004).

In order to extend this model to cover eight experimental conditions in Lin and Wu (2010), a coded notation j is
added to Equation (15) to signify the j'" experimental condition (Appendix 4) so that u, I and ¢ level can be
calculated accordingly. That is:

2
Ouj = \/kZSDN : %4‘ kzy 17 +kgy - ¢?j=0t07 (16)
i

Later on, u;, I; and ¢; will be scaled or modified based on mechanisms discussed in section 2, but, initially,
ug=0.5, [p=1 and ¢y =1 are used respectively in baseline condition (j=0) to keep the relative weightings of SDN,
CN and TN identical with original settings in Van Beers et al. (2004).

Now, the averaged total endpoint variability (S,,,>) for single finger, ballistic movements in urgent condition
without pacing is determined by the following equation:

.5 = So*(MT )/ MT) (17)

where S,> (68 mm?) is the averaged total endpoint variability in Van Beers et al. (2004), and it is scaled by a ratio of
the average ballistic movement time in numerical typing (M7, Appendix 5) predicted by Equation (11) to the
average movement time (M7, _420 ms) in the experiment of Van Beers et al. (2004). The endpoint variability is
scaled by movement time' because endpoint variability in ballistic movements is more associated with peak velocity
(Messier and Kalaska 1999) and peak velocity is found to be highly correlated with movement time in Van Beers
et al. (2004). The resultant endpoint variability in baseline condition is S,,0> =17 mm?>. In non-baseline condition,
however, the endpoint variability can be quantified as:

S = 83(0uj/0ug)ii=0to 7 s)

where S,},—2 signifies endpoint variability in j™ experimental condition (j=0 to 7 signified eight experimental
combinations of three factors, see Appendix 4) and ¢, ; is the neuromotor noise level in the j™ condition (to be
further developed in Equation (29)). 6,0 and S,,o> are the neuromotor noise level and baseline endpoint variability
calculated from Equations (16) and (17), respectively.

Finally, to estimate the number of errors produced as a function of endpoint variability, the deviation of
keystrokes from the target (the centre of the key) needs to be calculated. The total endpoint variability (S, J2) is
assumed to be composed of variations in two orthogonal directions along movement directions (Figure 4). The
extent of these two variation components are assumed to follow normal distribution with mean m,=0 and standard
deviation S, ; and S}, ;, respectively. Their relationship is determined by aspect ratios (4R) in different movement
directions (0) so that the orientation of resultant scatter ellipses would be compatible with experimental results of
Van Beers et al. (2004). That is:

S2.
5 = a0 1 19
and
S = AR(0) - S}, (20)

AR(0) are provided in Van Beers ef al. (2004). Resultant S, ; and S, ; can be used to calculate aiming shift in X and Y
coordinates, i.e.

Ax; = S,;-cos(0) + Sy, - sin (0) @)
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d
an Ay; = Sy -sin (0) — S, - cos (0) (22)

A criterion to avoid typing errors needs to be set based on physical constraints of standard numerical keyboards
(Figure 2) and average finger pad size (10.1 mm) (Drury and Hoffmann 1992). Figure 5 shows relationships among
key size (S), key distance (KD), finger pad size (PS) and shift (SF) from centre of the key. In any case, if the typist
intended to touch the left key but ended up with his/her finger pad touching the right key, i.e.:

SF+0.5x PS>KD—05x S (23)

then an error would result. Given KD =19.1 mm, S=12.7 mm, and PS=10.1 mm, it can be calculated that any SF
exceeding 7.7 mm (SFpa) would produce numerical typing errors. Given that SF is assumed to be normally
distributed, the probability of errors in X-direction during j'® experimental condition can be calculated based on:

AR(0) - [$2) - (3us/o0) |
AR2(0) + 1

520 (0uslowa)]
AR (0) + 1

-cos (0) +

P(Errjy) =2 x 41 = ® | (SFpax — mo)/ -sin (0)

(24)

where ¢, ;signifies the extent of neuromotor noise in '™ experimental condition in Equation (16) and will be further
developed in Equation (29). ®[z] is the inverse cumulative normal distribution function that gives probability of z-
score greater than value z. The probability of errors in Y-direction can be modelled similarly:

Scatter eclipse
(oriented with moving
_. direction and aspect ratio

:.‘,f’ S/8n)

A .
Actual end point

(x+ax, y+ay)

@ :Movement Angle

Origin *

Figure 4. Endpoint variability in two orthogonal directions.

SF S

A
\ 4

Figure 5. Key size (S), key distance (KD), finger pad size (PS) and shift (SF).



Downloaded by ["University at Buffalo Libraries'] at 13:38 16 September 2012

12 C-J. Lin and C. Wu

AR2(0) - [Sﬁo : (au,,-/o’,,,o)}

| [t - (eu/ouo)]
P(Errjy)) =2 x o 1 = ® | (SFnax —mp) -sin (0) —

AR*(0) + 1

AR(0) + 1 cos (0)

(25)

If any Ax and Ay exceeding SF,.x would result in an error, the expected error rate would be 3.9% at baseline
(about 10.6 errors for 270 keystrokes). This error rate represents the baseline accuracy in single finger numerical
typing under slow pacing and urgent condition.

3.2.2.  Endpoint variability in different conditions

The baseline errors modelled in setion 3.2.1 represent endpoint variability in a single finger typing, slow pacing
and urgent condition. However, in multi-finger typing, muscle activation level () needs to be adjusted because
more motor units are assumed to be recruited to compensate force deficit. To compute how many more motor
units need to be recruited, the extent of motor unit recruitment is firstly determined by the equation (Selen
2007):

F= eRUQX]II(MVC) (26)

where R% is proportion of M1 motor units recruited and F is the corresponding force produced. The increment
of R% in multi-finger typing then is calculated based on keying force data reported in the literature (Martin
et al. 1996), and the finger force deficit needs to be compensated (Latash et al. 2002). That is, because the
maximal voluntary contraction (MVC) in Equation (26) was reduced in multi-finger typing, the R% must
increase, and the u also increased proportionally:

In(MVCy)

n(MVC) @

uj = uop -

The resultant muscle activation level (u) is calculated to be 111% in multi-finger typing (j=2, 3, 6, and 7) to
generate the same reaction force as in single finger typing.

Furthermore, in fast pacing condition, more CN is assumed to be added to an extent proportional to the
interference index (/) calculated in the following equation:

li=1y+DL;/(Tjc+ Tjr+ Tjc) (28)

where /; represents the extent of perceptual-motor interference in j™ condition on any entity relative to total time it
spends in the cognitive subnetwork. Finally, the TN component and u were also scaled by any change in movement
time based on movement time models: Equations (5) and (11) for close-loop controlled and ballistic movements,
respectively. In summary, the extent of neuromotor noise can be represented as a function of abovementioned
scalars and modifiers:

In(MVCy)]
0" Tn(MVC))

M1 \?
€0 " M7,

However, the abovementioned adjustments cannot account for reduction of endpoint variability by visual
guidance and corrections. It is assumed that visual guidance and corrections are subject to an initial delay (DL,)
because the visual feedback needs to go through 21 > X 2> Y > Z (Feedback Loop in Figure 1) so that it can be
transformed to corrective signals. The initial delay can be computed as the following based on the parameter
settings in Appendix 5.

DL; MT; )2

2
e .(C : 29
(Tic + Tjr + Tj,c)] ™A My, )

+ k- [10 +

DL, =Ty + Ty + Ty + Tz = 24 + 24 + 24 + 24 = 96 (ms) (30)
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Then, the endpoint variability under ballistic movements before the time of correction would be corrected
iteratively, leaving only variability occurring after the correction point. That is, if the movement was supposed to
last MT ms, the uncorrected portion of endpoint variability will be:

Sl =5 [M

[MT)

=82, MTq < DL,

1)

— DLV]/MT(0>,MT<0> > DL,

(1)

Thus, any movement shorter than the initial delay will not be corrected. Equations (24) through (31) combined

would allow estimations of error rates (Err%) in j

typing conditions:

E(Erry) = P(Errjx)) U P(Erry)) (32)
where
AR0) - [S% - (0ui/w0) | [S30- (uslous)]
P(Errjx) =2 x ¢ 1 =@ | (SFpax — mo) R0 11 -cos (0) + RO T sin (0)
ARZ(O) ' [Szz() ! (JLIJ/O-N,O):| . [Sio . (Ult,j/gtt,O)]
P(Errjiy)) =2 x {1 = @ | (SFnax — mo) TR0 1 -sin (0) — IR0 11 -cos (0)
if j=0,2,4,6 (ballistic without corrections); and
i 4 [MT0)—DL,] ;- [MT0)~DL,] 1
AR0) - [53, - “ T DL [t o]
P(Errjx) =2x ¢ 1 =® | (SFpax —mp) AR0) 11 -cos (0) + AR(0) 1 -sin (0)
i 4 [MT(—DL,] 4y [MT(—DL,] 1
AR? (0) ’ {SIZ,O ’ Uu.()‘/tyT(O) } . [Sio ’ JILO‘XSI)T(O) }
P(Errjy)) =2x {1 =@ | (SFax —mo) AR 1 -sin () — AR(0) 1 -cos (0)

if j=1,3,5,7 (visually guided and corrected)
AR(0) are provided in Van Beers er al. (2004); 6,,0 and S,,o> are baseline neuromotor noise and endpoint
variability that can be calculated from Equations (16) and (17), respectively. M T is estimated from Equation (5).
The detailed calculation of o, ; can be found in Equation (29). Here P(Err;yx,) is assumed to be independent of

P(Err;y,) because they are probability of errors in two orthogonal directions, i.e.
E(Err%;) = P(Errjx)) U P(Erryy)) = P(Errjx)) + P(Erry))

— P(Errjix)) X P(Erryy)) (33)

In order to transform error rates into number of errors, the dependent variable used in Lin and Wu (2011), the
following equation is used:

NE; = E(Err%;) x Nj;j=0to 7 (34)
where NE; is the number of errors predicted in the j' " conditions and N;is the number of keystrokes to be produced.
In the current study N;=270 because Lin and Wu (2011) asked each participant to type 30, 9-digit, random
numbers in each trial (30 x 9=270 keys).
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4. Results and model applications
4.1. Response time

The model predictions for response time in different typing conditions are shown and compared to experimental
data in Figure 6. To validate modelling results using experimental data in Lin and Wu (2011), the comparability of
model predictions and experimental results were quantified by Pearson correlation coefficient as well as the root-
mean-squared error percentage (RMSE%).? The overall RMSE% was 3.68% with a correlation of 95.55%.

The abovementioned results can be further factorised into pacing (speech rate defined by ISI), finger strategy,
and urgency. Table 1, 2, and 3 show factorised results for pacing, finger strategy and urgency respectively. For
pacing factor, the model predicted a delay of 54 ms for fast speech while it was 38 ms in the experiment, resulting in
1.20% RMSE.

For finger strategy factor, the model predicted an increase of 27 ms in response time for multi-finger typing while
22 ms was added in the experiment. The resultant RMSE% was 0.94%.

For urgency/motivational factor, the model predicted a 37 ms decrease in urgent typing, 7 ms less than 44 ms
revealed in the experiment. The RMSE% was 0.96%.

4.2. Typing errors
The model predictions of accuracy can be found in Figure 7 in comparison with experimental results of Lin and Wu
(2011). The overall RMSE% was 35.10% with a correlation of 96.52%.

Similarly, the results can also be factorised into pacing (speech rates), finger strategies and urgency, and they are
shown in Table 4, 5 and 6 respectively. For pacing, the effect of fast speech was predicted as an increment of 2.1

800 +
_ 758
E 750 + \\ 720 ‘0742 741
E 751 ) 714 730N
E 700 | 697 715 N RO 698
E 705 N\, 687
2
E 650 + 669 O Experiment
m Model Prediction
600
ISI= | ISI= | ISI= | ISI= | ISI= | ISI= | ISI= | ISI=
500 1000 500 1000 500 1000 500 1000
Single Finger Multi-Finger Single Finger Multi-Finger
Non-urgent Urgent

Figure 6. Comparison of model predictions of response time with experimental data.

Table 1. Factorised results for pacing factor in response time.

Pacing Fast Slow Effect
Exp 747 709 —38
Mod 746 692 —54
RMSE % 1.20

Table 2. Factorised results for finger strategy in response time.

Finger Single Multiple Effect
Exp 717 739 22
Mod 705 732 27

RMSE % 0.94
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Table 3. Factorised results for urgency in response time.

15

Urgency Non-urgent Urgent Effect
Exp 750 706 —44
Mod 737 700 —37
RMSE % 0.96
16.0 T 14.1
140 12.9
S 120 'N_O-G O, 08
= O.__ 124 3
§ 10.0 7 7.8 109 -0 10.7
g S0 8T g, sin., 20 91
g 60 Oy
2 4.0 + ’ ?5 5.4 O Experiment
2.0 + ® Model Prediction
0.0
ISI= | ISI= | ISI= | ISI= | ISI= | ISI= | ISI= | ISI=
500 1000 500 1000 500 1000 500 1000
Single Finger Multi-Finger Single Finger Multi-Finger
Non-urgent Urgent

Figure 7. Comparison of model predictions of errors with experimental data.

Table 4. Factorised results for pacing factor in errors.

Pacing Fast Slow Effect
Exp 9.3 7.6 —1.8
Mod 10.2 8.1 -2.1
RMSE % 6.17

Table 5. Factorised results for finger strategy in errors.

Finger Single Multiple Effect
Exp 7.7 9.2 1.6
Mod 8.9 9.4 0.4
RMSE % 7.53

Table 6. Factorised results for urgency in errors.

Urgency Non-urgent Urgent Effect
Exp 6.1 10.8 4.7
Mod 6.2 12.1 6.0
RMSE % 8.03

errors (6.17% RMSE in comparison with experimental data). For finger strategies the model predicted an effect size
of 0.4 increment of errors in multi-finger tying (7.53% RMSE). For urgency the model predicted an increase of 6.0
errors in urgent condition (8.03% RMSE). In general, QN-MHP successfully modelled the extents and trends of
effects on typing performance with lower than 10 RMSE% and high correlation.
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4.3. Model applications
4.3.1. Determination of optimal speech rates for synthesised voice systems

Based on abovementioned modelling results, the model predicted that errors and response time would be reduced
with slower speech rate (longer ISI). There is, however, a trade-off between speech rate and task duration, i.e. the
slower the speech rate, the longer the task duration. Obviously none of the speech rates tested in Lin and Wu (2011)
were the optimal pacing. It is, therefore, of research interests to ascertain how the model would help in determining
such an optimal pacing in different situations. In order to quantify productivity under different accuracy and typing
speed, the following object function is defined:

Maximise DPM = (60 x 10°/PT;) x (1 — Err%y) (35)

where DPM is number of correct digits typed per minute. Figure 8 shows model prediction results from /S7= 500
ms to IS7= 600 ms (the productivity from ZS7= 600 ms to S7= 1000 ms is constant so the graph is trimmed). When
optimal pacing is adopted, productivity of single finger typing improves from 78 DPM to 86 DPM in non-urgent
condition and from 81 DPM to 90 DPM in urgent condition (in comparison with /S7= 500 ms). For multi-finger
typing, using optimal pacing increases productivity from 74 DPM to 84 DPM and from 77 DPM to 87 DPM in
non-urgent and urgent condition respectively. On average, the optimal pacing could increase productivity by 9
DPM.

4.3.2.  Assistance towards optimal keyboard design for urgency

We may also wonder what might be the optimal keyboard design when the pacing cannot be optimised and may
cause interference. Here we choose IS7=500 ms, the fast pacing condition in Lin and Wu’s experiment, as an
example. Optimisation should be subject to the following constraints: size of the optimised numerical keyboard
should be less than or equal to the original numerical keyboard (space efficiency) and key size should be at least the
finger pad size. Therefore we could rewrite the object function with the constraints as follows:

Maximise DPM = (60 x 10°/PT;) x (1 — Err%y)
Subject to (S + Kg)= 19.1(keyboard size constraint) (36)

S = 10.1(finger pad constraint)
Ke=0

where S and Kg are key size and key gap (distance between edges of two adjacent keys) respectively. If S+ K is
greater than key distance (KD=19.1 mm) on a standard numerical keyboard, then the resultant numerical

100 T — Single finger, Non-urgent (Opt. 553ms)
------- Single finger, Urgent (Opt. 525ms)

- 9 7 —— Multi-finger, Non-urgent (Opt. 571ms)
E - - - - Multi-finger, Urgent (Opt. 543ms)
I} ,
8§ g5’
S
:“’i“ 80 -
[a)

75

70 1 1 1 |

500 520 540 560 580 600

ISI

Figure 8. The optimal speech rate defined by ISI.
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keyboard would exceed the size of the standard numerical keyboard (Figure 2). Given Equation (36), the DPM can
be optimised, and the results are shown by contour plots in Figure 9. Based on the results, the standard numerical
keyboard (12.7 mm in key size and 6.4 mm in key gap) is not an optimal design at fast pacing regardless of urgency.
A larger key size (17.5 mm) with a smaller key gap (0.5 mm) is needed to maximise the productivity. The
optimisation is expected to improve productivity of single and multiple-finger typing by 10.2 DPM on average. For
urgent typing, however, a smaller key size (10.1 mm) with a larger key gap (9 mm) is needed to maximise the
productivity, and the optimal design is expected to increase productivity by 1.7 DPM on average. In general, smaller
keys with a larger gap are preferred by numerical typing under urgency, while typing in non-urgent situation
requires larger keys with a smaller key gap (Figure 10).

Practically, the keyboard design can be optimised based on the situation of real usage. For example, in military
combat systems, the operators may need to respond to auditory commands as soon as possible. Because both
reaction time and accuracy is critical in wartime, under urgent situation, the numerical keyboard used in the military
combat system may consider adopting smaller key size with larger key spacing as suggested in Figure 10 (right). In
contrast, older people or physically challenged individuals may have slower response time in movements and need
more time in error correction when public kiosks are used. In that case, the designer may consider adopting the
design at the centre of Figure 10 to maximise reaction time and reduce errors.

Single Finger Typing, Non-urgent Condition (ISI=500ms) Single Finger Typing, Urgent Condition (ISI=500ms)

@ Standard Keyboard Design

@ Standard Keyboard Design
0 Optimal Keyboard Design

@Optimal Keyboard Design
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80 17 90 ]
@ ® ]
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DPM b b
5 ] 60
‘318 4 50 |
~ 40 -1
fg ] DPM 30
o 20 DPM = 82.7
B 9 101 .
0 9
19 19 18
4 Key Gap
Key size 134, 1 Key size 13y, 1 1 Key Gap
10 0 10 0
Multi-finger Typing, Non-urgent Condition (ISI=500ms) Multi-finger Typing, Urgent Condition (ISI=500ms)
@ Standard Keyboard Design @ standard Keyboard Design
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<
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Figure 9. Contour plots of effects of key size and key gap on typing productivity.



Downloaded by ["University at Buffalo Libraries'] at 13:38 16 September 2012

18 C-J. Lin and C. Wu

(7] [e] [o]
[+] [5] [e]
1] 2] 3
o [ o ][]

o
~N
[o2)
o

=] [=] [~]
] [t | [

][] [=] ]

.

Figure 10. Keyboard designs (left: standard; centre: for use without urgency; right: for use in urgency)

5. Discussion

In this modelling work, Queuing Network Model Human Processor (QN-MHP) was used to predict numerical
typing performance in terms of typing speed (response time) and accuracy (number of errors) in different pacing,
finger strategies and urgency conditions. Typing performance under different task conditions was never modelled by
previous typing-related models (Rumelhart and Norman 1982, John 1996, 1998, Wu and Liu 2008b). QN-MHP was
proved able to model typing performance in those conditions, with low root-mean-squared error percentage and
high correlation when the model predictions were compared to experimental data (Lin and Wu 2011). The speech
rate represented an external task demand while urgency was associated with rewards and internal motivation. Both
could be influential factors in general perceptual-motor tasks in addition to motor control strategies used to perform
the task, e.g. finger strategies in typing. Modelling those task-related factors associated with performance of
perceptual-motor tasks is one step towards Newell’s unified cognitive theory that can model a phenomenon in
diverse situations where the phenomenon occurs.

The current work also contributed to enhancing QN-MHP in that previous QN-MHP modelling studies did not
incorporate top-down control mechanism and the information flow was mainly regulated by bottom-up phenomena
such as queuing, waiting, and processing of entities. Such a push system, i.e. entities were pushed into servers by
continuous arrivals, is likely to have congestions and may not be representative of cognitive processes in multi-
tasking or resource competition. The human brain indeed has some embedded top-down control functions to
regulate information flow based on the importance of the task and to mediate cognitive system by activating extra
brain areas and/or suppressing affective brain areas under stress (Paus et al. 1993, Pochon et al. 2002). The
enhancement of QN-MHP related to top-down control mechanism enabled QN-MHP to also model a pull system in
which the flow of entities were controlled by servers so that processing of multiple entities competing for the same
route or resource can be optimised, as revealed in fast speech condition in the current study. Furthermore, the
current work improved QN-MHP by enhancing its capability to account for error-variability produced by different
task situations. Previous QN-MHP modelled endpoint variability by population size which is a constant within
individuals. However, an individual can recruit different motor areas to execute motor tasks in various situations,
and, in multi-finger typing, additional brain areas could be recruited to increase muscular co-activation so that
finger force deficit would be compensated (Hager-Ross and Schieber 2000). The variation of recruitment in motor
units has not been covered by previous QN-MHP studies. Since motor recruitment was associated with neuromotor
noise and the noise level was associated with endpoint variability in rapid aiming (Van Beers ef al. 2004), the
neuromotor noise was integrated to the current model to account for endpoint variability in different finger
strategies. Without this enhancement, the model would not be able to explain the reduction of errors in single finger
typing as endpoint variability would not change by assuming a constant standard deviation of normal distribution
in previous QN-MHP (Wu and Liu 2008b).

The model predicted different optimal speech rates in different situations, and those results could be easily
applied to the design of human computer interface in multi-tasking. For example, in cases where visual channels are
occupied by the primary tasks, e.g. daily driving or radar monitoring in war time, verbal signals may be necessary to
provide drivers or operators numerical information to be input into the system, ¢.g. dialling on a touch screen cell
phone or entering target coordinates via physical numerical keyboards. The tasks may be performed in different
situations, e.g. non-urgent typing with single finger in cell phone dialling versus urgent typing with multiple fingers
in radar monitoring, but, during multi-tasking, drivers or operators are likely to react rapidly to the verbal stimuli
instead of memorising them and typing at a later time. In those cases, an optimal speech rate can help design the
voice synthesise system to output verbal information at an appropriate pace so that the numerical typing
performance can be maximised. The model also predicted that, in non-urgent numerical typing, the key size should
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be larger (about 17-18 mm) while the key gap may be sacrificed (1-2 mm is enough) without impeding typing
performance. This result is compatible with previous keyboard design study showing that people performed better
on larger keys (20 mm in size), implying their greater than normal requirement for accuracy, while they are
relatively insensitive to key gaps (Colle and Hiszem 2004). To the authors’ knowledge, systematic efforts have not
been made to compare numerical typing performance in urgent and non-urgent situation. However, the model
prediction that smaller keys with larger gaps are needed for numerical typing in urgency makes sense because faster
responses in urgent typing are supposed to result in greater endpoint variability that is scaled by target size, i.e. the
larger the target size, the greater the variability. By using smaller keys with a larger gap, the greater endpoint
variability is expected to be dealt with by both inherent scaling (typists naturally produce smaller variance with
smaller target) and by external buffering (a larger gap allows greater variability without making errors). Whether
this prediction is correct, however, needs to be confirmed by further user experimentation.

It is noticed that the overall root-mean-squared error (RMSE) of the model predictions for typing accuracy was
relatively high (35.10%) when it is compared to the RMSE of the model predictions for typing speed (3.68%).
Although factorised results showed that the model could predict the effects of pacing, finger strategy and urgency on
typing accuracy with 6.17%, 7.53%, and 8.03% RMSE respectively, the enhanced QN-MHP modelled typing errors
mainly through spatial variability of typing movements; other cognitive or motor processes could also produce
typing errors. For example, typists could forget numbers to be typed or transpose their positions due to memory
failure, resulting omission or transposition errors. Omission could be also caused by insufficient depression force
due to force production variability (Wu and Liu 2008b). Omission and transposition errors, however, constituted
less than 10% of errors and were thus not emphasised in the current model (Lin and Wu 2011). In addition, when
typists touched the wrong key or two adjacent keys simultaneously as predicted by the model due to excessive
spatial deviation, errors did not necessary registered because there was certain mechanical allowance of depression
before the key was activated. Typists might manage to correct the keystroke after the key was touched without the
error being registered. This mechanical buffer was not modelled by the enhanced QN-MHP and might contribute to
the discrepancy between theoretical accuracy and accuracy measured in reality.

So far, QN-MHP has successfully modelled various types of perceptual-motor tasks including basic steering
tasks and dual tasks in vehicle driving (Liu et al. 2006, Wu and Liu 2007), transcription typing (Wu and Liu 2008b)
and numerical typing (the current study). It was also used to account for psycho-physiological phenomena observed
in perceptual-motor tasks such as mental workload (Wu and Liu 2007), event-related potential (ERP)(Wu et al.
2008), and psychological refractory period (PRP) (Wu and Liu 2008a). However, no high level cognitive operations,
such as problem solving, reading comprehension and complex reasoning, are covered by any QN-MHP model (Wu
and Liu 2008b). This limitation is partially attributable to the NGOMSL task description used in the cognitive
network. The task analysis is completed beforechand and the steps are deterministic, making the execution of
cognition static, i.e. procedural steps are followed with only elementary comparisons and computations of
information. To solve problems, QN-MHP needs to adopt a dynamic process and a more flexible structure so that
servers may modify connections and take novel steps to accommodate new situations. A learning process through
change of routing probability and processing time has been implemented in previous QN-MHP (Wu and Liu 2008b).
Further study may extend this process into a more powerful mechanism that is able to generate new connections and
processing steps in cognitive networks. Furthermore, current QN-MHP did not model individual differences, but
they may significantly contribute to model applications. For example, although the model predicted optimal speech
rates and keyboard designs in urgent and non-urgent situations, anthropometry (e.g. finger pad size, hand size),
personality (e.g. vulnerability to stress) and typing expertise may affect typists’ ability to cope with urgency. Optimal
pacing may vary based on their expertise and personality, while keyboard design may be adjustable to individual
anthropometry if touch screen keyboards are used. Customisation of task demands and keyboard designs based on
individual differences should improve user performance and preference as compared to provision of only one optimal
task and keyboard type. Ideally, future QN-MHP should consider individual differences and provide different system
design suggestions according to individuals’ characteristics instead of an average typist’s.

6. Conclusion

An enhanced Queuing Network Model Human Processor (QN-MHP) architecture was proposed in this study to
account for mechanisms of pacing, response complexity and urgency factors in numerical typing. Dual task
interference regulated by a top-down control mechanism, complexity of fingering strategy dealt with by multi-stage
response selection, and alternation of movement modes associated with close-loop control were added to the
existing Queuing Network Model Human Processor (QN-MHP) architecture to model response time in numerical
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typing. A derived neuromotor noise model and a visual guided correction mechanism were utilised to quantify
spatial variability of typing movements and thus typing errors could be estimated based on physical constraints of
standard numerical keyboards. After model predictions were validated by the experimental data in Lin and Wu
(2011), the results showed that the model successfully predicted the effects of pacing, finger strategy and urgency
with low root-mean-squared errors (3.68 % for response time and 35.10% for typing accuracy) and high correlations
(95.55% for response time and 96.52% for typing accuracy). Manipulation of continuous pacing rate inputs and
keyboard design parameters rendered different typing performance under different typing conditions, and,
therefore, the model can be utilised to provide design suggestions for optimal pacing in voice synthesis system and
for the best layout design in terms of key size and spacing. Modelling human perceptual-motor skills in different
task conditions has thus advanced with the enhanced QN-MHP model as it visualised complicate mechanisms in
numerical typing and predicted human performance in response time and accuracy under different task pacing,
typing strategies and urgency conditions.
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Notes

1. Some experimental studies found ballistic movement variability was proportional to either movement amplitude (e.g. Lin
and Drury 2011) or squared movement amplitude (e.g. Beggs et al. 1972). The ballistic movements in their experiments were
either controlled in movement time by a metronome or performed without emphasis on rapid responses. Since the rapid
typing movements were encouraged in both Lin and Wu (2011) as well as in van Beers ez al. (2004) but their time were not
controlled, the results in those experiments might not apply to the current modelling work.

2. The root-mean-squared error percentage is computed by:

RMSE(%) = 100 x

2
Z7=1 (Ei - M./’) 2;1:1 E;
n n

where E; and M; were experimental observation and model prediction in condition j, respectively, n was total number of
observations/predictions to be compared.
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Appendix 1. Empirical evidence for the effects of dual-task interference

Unlike continuous transcription typing, the numerical hear-and-type task requires typists to react rapidly to transient stimuli in a
digit-by-digit manner. No visual and permanent information allows typists to preview so that serial keystrokes can be pre-
programmed and produced independently regardless of the speed of input information. In this situation, the pace is regulated by
the inter-stimuli interval (ISI), and short ISI can produce temporal overlaps between processing of consecutive stimuli, resulting
in dual-task interference (Pashler 1994a). When two consecutive auditory-manual tasks were required closely in time, the second
response was found to be delayed as a function of ISI even though they were performed by different hands (Pashler and Christian
1994). Typing performance was also found to be affected by concurrent auditory recognition tasks (Calvo and Alamo 1987). The
delay due to short ISI has been speculated to be a result of competition for general and specific attentional resources (Calvo and
Alamo 1987), bottleneck in response-selection (Pashler 1994b) or even response execution (Ulrich ez al. 2006). Given that
saccadic eye movements are limited but necessary for obtaining target information and they cannot be made without visuospatial
attention (Hoffman 1995, Adam et al. 2000), the dual-task interference is supposed to cause a delay to reconcile visual resource
competition between execution of the on-going aiming task that needs eye-fixation and the coming auditory stimuli that triggers
saccades.

The competition for attentional resources may further degrade motor accuracy through activation of the anterior cingulate
cortex (ACC). ACC is a cortical region where cognitive and motor commands are funnelled to the motor system, and electrical
stimulation of the ACC can elicit movements. Positron emission tomography (PET) study showed that regional cerebral blood
flow (rCBF) within the ACC significantly changed with high attentional demands (Pochon et a/. 2002). Since there is somatotopic
organisation that connects the ACC and the primary motor cortex (M1), competitions in the ACC were assumed to increase
activation level in M1, raise neuromotor noise and, thus, decrease movement accuracy.
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Appendix 2. Empirical Evidence for the Effects of High Response Complexity and Finger Enslaving

Multi-finger typing is associated with higher response complexity (Schumacher ez al. 1999) and subject to finger enslaving effects
(Kilbreath and Gandevia 1994, Zatsiorsky et al. 2000, Li et al. 2004). Multi-finger numerical typing required matching five
(fingers) to eleven (keys), and, thus, produced greater stimulus-response (S-R) numerosity than matching one (finger) to eleven
(keys) in single finger typing. Greater S-R numerosity would increase reaction time for response-selection (Schedlbauer 2006).
Furthermore, peripheral constraints (e.g. coupling between soft tissues of adjacent fingers and interconnections between tendons
of extensor and flexor digitorum) and central mechanisms (e.g. overlaps of M1 cortical areas innervating to different finger
muscles) suggested that individualisation of finger movements is limited. Involuntary force would be produced on uninstructed
fingers while maximal voluntary force of the instructed finger would be reduced if multiple fingers were recruited simultaneously
(Latash et al. 2002). To keep uninstructed movements stable and counteract force deficit from finger-enslaving, additional
cortical motor areas must be recruited (Hager-Ross and Schieber 2000). It is speculated that this additional recruitment of motor
area would also increase neuromotor noise and degrade accuracy of movements.

Appendix 3. Empirical evidence for the effects of urgency

Neurological studies showed that monetary rewards activated specific cortical areas that are independent of task difficulties, e.g.
Brodmann area 10 in the ventral medial prefrontal cortex (Pochon er al. 2002). The area is strongly connected to the
hypothalamus which projects to the sympathetic motor system associated with ‘flight-or-fight’ response. In addition, the
monetary rewards also deactivated the limbic and paralimbic system that is associated with behaviour adaptation to maximise
performance level. It is thus assumed that a monetary reward system facilitates ballistic movements due to its time efficiency.

Furthermore, aiming movements are not perfect and subject to endpoint variability (Elliott ez al. 2001, Van Beers et al. 2004).
The endpoint variability is an innate nature of human motor behaviours because the perceptual-motor system is an inherently
stochastic and noisy system (Van Galen and Van Huygevoort 2000). Neuromotor noise could be added throughout the execution
of motor behaviour (Van Beers et al. 2004), and the endpoint variability would be related to the signal-noise ratio (Van Galen
and Van Huygevoort 2000). To counteract endpoint variability, visual guidance is needed for on-line correction of aiming
movements despite their being pre-programmed (Smiley-Oyen 1996, Elliott ez al. 1999). Fitts’ law (1954) described the movement
time of visual-guided movements as a function of movement amplitude and target width (Fitts 1954) and has been verified as an
effective modelling method to predict movement time in both rapid aiming (Soukoreff and MacKenzie 2004) and typing under
visual control (Drury and Hoffmann 1992). However, Gan and Hoffman (1988) found that movements with lower Fitts’ difficulty
indices were likely ballistic and their movement time was related to the square root of the movement amplitude without
considering target widths as much as visually guided movements (Gan and Hoffmann 1988). Therefore, the movement time of a
typing task could possibly be modelled as either ballistic or visual-controlled. When quick responses were required under urgent
situation, ballistic movements were more likely to be adopted because they can be prepared in advance regardless of target size
and produce shorter movement duration without later corrective phase (Donkelaar and Franks 1991). Although ballistic
movements are expected to reduce movement time, the endpoint variability would be relatively large due to lack of on-line
corrections.

Appendix 4. Coding for eight experimental conditions in modelling errors

When response time is modelled, single finger typing under slow pacing without urgency is considered to be baseline. However, in
modelling errors, single finger typing under slow pacing with urgency is used as baseline for compatibility with the original
experiment in Van Beers et al. (2004). This discrepancy necessitates a new notation system to code experimental conditions.
Since, single finger typing under slow pacing with urgency is defined as baseline, this condition is noted as j=0. Using 3 digits of
1-bit codes to note urgency, finger strategy and pacing, we can have the coding system as shown in Table A—1.

Table A-1. Coding system for modelling errors in different experimental conditions.

Bit

Condition 29 (Urgency) 2' (Finger strategy) 22 (Pacing) Code (j)
Urgent, single finger, slow pacing 0 0 0 j=0
Non-urgent, single finger, slow pacing 1 0 0 j=1
Urgent, multi-finger, slow pacing 0 1 0 j=2
Non-urgent, multi-finger, slow pacing 1 1 0 j=
Urgent, single finger, fast pacing 0 0 1 j=
Non-urgent, single finger, fast pacing 1 0 1 j=5
Urgent, multi-finger, fast pacing 0 1 1 j=06
Non-urgent, multi-finger, fast pacing 1 1 1 j=1




Downloaded by ["University at Buffalo Libraries'] at 13:38 16 September 2012

24 C-J. Lin and C. Wu
Table A—2. Parameter settings in QN-MHP.
Parameter Mean value (ms) Description Source
Tip 126 Time for auditory perception Wu and Liu (2008a)
(42 ms at Server 1, 2/3 and 4; i.e. 42 x 3 = 126)
Ty 18 Average cycle time at Server B
Tc 18 Average cycle time at Server C
Tr 18 Average cycle time at Server F
Tro0) 302 Estimated processing time at Server F for single finger typing See Appendix 6
Trn1) 320 Estimated processing time at Server F for multi-finger typing
T\w 24 Average cycle time at Server W Wu and Liu (2008a)
T,y 24 Average cycle time at Server Y
T, ~ 24 Average cycle time at Server Z
Ty 21-T 25 24 Average cycle time in motor subnetwork Feyen (2002)
MT, 133 Estimated movement time for Fitt’s law tasks Drury and Hoffmann (1992)
MTp, 105 Estimated movement time for ballistic movements Gan and Hoffmann (1988)
Ks 10 Key closure time Wu and Liu (2008a)
Table A-3. Parameter settings in neuromotor noise model.
Parameter  Value  Unit Description Source
MT, 420 ms Average movement time in the original rapid aiming experiment. Van Beers et al. (2004)
kspn 0.185 - Relative weighting constant for signal dependent noise
kewn 0.103 - Relative weighting constant for background noise
krn 0.083 - Relative weighting constant for temporal noise
U 0.5 — Initial extent of signal dependent noise
Iy 1 — Initial extent of background noise
Co 1 - Initial extent of temporal noise
Sy’ 68 mm?>  Average end point variability in the original rapid aiming experiment.
mg 0 mm  Assumed mean for the shift from the centre of the key -
DL, 96 ms Initial delay for visual correction Figure 1
N; 270 - Number of keys to be produced Lin and Wu (2011)

Appendix 5. Parameter settings in QN-MHP and neuromotor noise model
See Tables A-2 and A-3.

Appendix 6. Estimation for processing time at Server F

Making a keystroke in numerical typing task can be modelled by NGOMSL-style description as shown in Table A-4, and
individual steps in the task require Server F to perform phonological judgment (what the digit is), multiple-choice decision (which
finger to use), spatial working memory operations (where the key is) and visuomotor choices (where to look). Each step in the
task is assumed to take one average cognitive cycle time in QN-MHP (18 ms) to complete, except for <watch for> operator.
This operator involves waiting for saccadic eye movements to obtain visual information and processing of visual information.
Average eye movement time (230 ms) in Card et al. (1983) is adopted as the time lapse for “Watch for” operator. Processing time
of step 6 and step 9 are not included in reaction time because they are accumulated after completion of the response. For single
finger typing, four cycles (18 x 4 =72 ms) plus one <watch for> process (230 ms) are needed, resulting in 302 ms of processing
time (7Trp)). For multi-finger typing, an additional cycle (step 7) is needed and causes the processing time to increase
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Table A—4. NGOMSL-style task procedure for numerical typing at Server F.
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GOAL: Do numerical typing task

Method for GOAL: Press <key> at <location> with <finger>
Step 1 Retrieve <location> of <number> on a numerical keyboard from LTM
Step 2 Watch for <label> around <location>

Step 3 Recall <finger strategy > from LTM

Step 4 Decide if <finger strategy > matches <single finger >

IF MATCH go to step 5

ELSE go to step 7

Step 5 Press <key> at <location> with <index finger >

Step 6 Return with goal accomplished

Step 7 Decide <finger to use> based on <location>

Step 8 Press <key> at <location> with <finger to use>

Step 9 Return with goal accomplished




