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Abstract—Transportation cyberphysical systems (CPSs) aim to6
improve driving safety by informing drivers of hazards with warn-7
ings in advance. The understanding of human responses to speech8
warnings is essential in the design of transportation CPSs to elim-9
inate hazards and accidents. To date, many works have addressed10
diverse warning characteristics with experimental approaches.11
However, the computational model to quantify the effects of warn-12
ing characteristics on human performance in responses to speech13
warnings is still missing. Mathematical equations were built to14
model the effects of lead time, loudness, and signal word choices15
on human perceptual, cognitive, and motor activities involved in16
speech warning responses. Different levels of lead time, levels of17
loudness, and signal word choices served as inputs in the model18
to predict human error rate and reaction time of speech warning19
responses. The model was validated with drivers’ crash rates20
and reaction times to speech warnings of upcoming hazards in21
driving assistant systems in two empirical studies. Results show22
a good prediction of human performance in responding to speech23
warnings compared with the empirical data. The application of24
the model to identify optimal parameter settings in the design of25
speech warnings in order to achieve greater safety benefits is later26
discussed.27

Index Terms—Human performance modeling, human–28
computer interaction, intelligent transportation systems.29

I. INTRODUCTION30

D EATHS and injuries resulting from road traffic accidents31

has become a major public health problem. According32

to statistic data published by the National Highway Traffic33

Safety Administration (NHTSA) in U.S., 5.3 million crashes34

occurred nationally in 2011 [1]. With regard to improve driving35

safety, recent advances in Transportation Cyber-Physical36

Systems (CPS) aim to establish a connected transportation en-37

vironment by monitoring the status of the physical worlds (e.g.,38

sensors and actuators), connecting it with the cyber worlds (e.g.,39

information, communication, and intelligence), and providing40

Manuscript received September 14, 2015; revised January 21, 2016; accepted
February 27, 2016. This work was supported by the National Science Founda-
tion. The Associate Editor for this paper was Y. Gao.

The authors are with the Department of Industrial and Systems Engineering,
The State University of New York at Buffalo, Buffalo, NY 14260 USA (e-mail:
yiqizhan@buffalo.edu; seanwu@buffalo.edu; jingyanw@buffalo.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TITS.2016.2539975

the integrated real-time information among multiple levels, 41

including vehicles to vehicle communication, vehicle to in- 42

frastructures communication and in-vehicle information com- 43

munication [2]. Compared to conventional transportation 44

environment, the connectivity of the transportation CPS allows 45

drivers to learn about the traffic status out of their sight, and 46

provides them with more time to respond to warnings regarding 47

potential hazards [3]. 48

In order to improve the safety of both humans and vehi- 49

cles, as well as facilitate communication between them, it is 50

important to design warning characteristics based on human 51

performance. While work has been done to increase the com- 52

munication reliability of connected vehicles, the effectiveness 53

of such systems could not be achieved without drivers mak- 54

ing proper and timely responses. Therefore, modeling driver 55

responses to warnings is necessary to achieve effectiveness of 56

warning systems with the human in the loop. 57

Compared to non-speech auditory warnings, speech warn- 58

ings are more user-friendly since humans can easily understand 59

and differentiate warnings without specific trainings in memo- 60

rizing and recognizing warnings [4]. Previous work showed that 61

people working in an operation room had difficulties in recog- 62

nizing more than half of the non-speech warnings currently in 63

use [5]. Another study indicated that people were unable to 64

distinguish more than six complex warnings [6]. Moreover, pre- 65

vious work found that speech warnings led to a faster reaction 66

time than non-speech warnings regarding spatial information 67

[7]. As a consequence, speech warnings can be widely applied 68

to the Transportation CPS with different warnings in diverse 69

traffic situations. 70

To date, many empirical studies have examined the influence 71

of warning characteristics on human performance, such as 72

content, perceived hazard, familiarity, signal word, warning 73

sources, and number of items in speech warnings, on human be- 74

havior and performance [8]–[11]. Existing empirical has been 75

shown that warning lead time, loudness and signal word choice 76

have significant effects on driver responses to speech warnings. 77

Lead time is defined as the available time for responses from 78

the start of the speech warning until the occurrence of the 79

collision [12]. Studies showed early warnings led to shorter 80

reaction times to collisions than either middle or late warnings 81

[13]–[15]. The warning loudness was found to have a signif- 82

icant effect on urgency expression [16]. In terms of warning 83
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semantics, the different signal words chosen in speech warnings84

significantly influence a human’s judgment of the urgency level85

of a situation [17]. However, the behavioral approach used in86

existing empirical studies to assess the effectiveness of speech87

warnings can be highly task-dependent, time consuming, and88

high-cost. The modeling approach we adopted in the current89

work will provide the predictions of human performance under90

the different levels of the modeled warning characteristics by91

running the developed model, and help designers improve their92

warning designs in Transportation CPS.93

To our best knowledge, there are few mathematical models94

that predict human responses to speech warnings. Two major95

psycholinguistic models, the COHORT model and TRACE96

model, have described the mechanism of how human recognize97

and process spoken words in general. The COHORT model98

is a bottom-up verbal model that explains the lexical access99

for spoken word perception [18]. In the stage of activation,100

perception is influenced by auditory stimulation such that all101

words matching the perceived acoustic profile are activated,102

serving as a cohort. The selection stage refers to the process of103

selecting consistent input and eliminating candidate words that104

no longer match the input. Once the single candidate is isolated105

from the cohort, word recognition is accomplished. Unlike the106

COHORT model, the TRACE model is an interactive activated107

simulation model. The main feature of the model is the abil-108

ity to describe the interaction of units including within-level109

inhibition and between-level facilitation [19]. The cascaded110

activation mode in the TRACE model enables the activation111

word-level processing units sooner after the activation of the112

feature-level processing units. The word with the most support113

from the bottom layers will increase its activation until only114

one candidate is left standing. These two cognitive models laid115

the significant foundation on understanding the mechanism of116

speech perception and processing.117

However, the COHORT model and the TRACE model focus118

on the speech perception and recognition instead of human119

responses to speech. Therefore, they cannot be used to predict120

human performance in their responses to speech warnings.121

Meanwhile, both psycholinguistic models focus on general122

mechanism of speech processing rather than different character-123

istics of speech warnings so that they are not able to predict the124

effects of different characteristics of speech warnings on human125

responses. Moreover, neither COHORT nor TRACE model is126

a mathematical model. Mathematical models are indispensable127

to predict how human respond to speech warnings under the128

influence of warning characteristics in order to be applied129

in the design of transportation CPS. Therefore, new models130

are still needed to model how different characteristics of the131

speech warnings affect human responses with the mapping be-132

tween the meaning of speech warnings and the target response133

actions.134

The present work addresses this problem by developing a135

mathematical model to predict human responses to speech136

warnings in human–machine systems. This paper extended137

the model presented in [72] by integrating the algorithm of138

reinforcement learning in modeling the route choice in the139

processing of speech warnings and quantifying human reaction140

error rate and reaction time in speech warning responses. Three141

main speech-warning parameters are discussed: lead time, loud- 142

ness, and signal word choice. As the causes of accident in 143

reality can be very complex, the errors in initial responses 144

and the slowed responses to warnings are two of major causes 145

that leaded to traffic accidents. Therefore, accident rate is 146

modeled as the outputs of the model with this two causes being 147

considered and is tested with two empirical studies. In addition, 148

the applications of the model were discussed in setting up the 149

warning parameters to optimize the design of transportation 150

cyber-physical system in terms of human performance. The 151

interface of web-based software was proposed for designers as 152

an easy-to-use technology to design different speech warning 153

parameters associated with human performance. 154

II. MODELING MECHANISM AND MODEL ENHANCEMENT 155

A. Overview of Queuing Network-Model Human Processor 156

(QN-MHP) 157

Queuing Network-Model Human Processor (QN-MHP) is a 158

computational architecture that integrates three discrete serial 159

stages of human information processing (i.e., perceptual, cogni- 160

tive, and motor processing) into three continuous subnetworks 161

(see in Fig. 1). Each subnetwork is constructed of multiple 162

servers and links among these servers. Each individual server is 163

an abstraction of a brain area with specific functions, and links 164

among servers represent neural pathways among functional 165

brain areas. The neurological processing of stimuli is illustrated 166

in the transformation of entities passing through routes in 167

QN-MHP. Since this architecture was established, QN-MHP 168

has been applied to quantify various aspects of human cognition 169

and performance, such as human mental workload [20], and the 170

reinforcement learning process [21]. In terms of the perceptual 171

subnetwork, new equations have been integrated to model eye 172

movements, and speed perception [22], [23]. The cognitive 173

subnetwork has been improved to model textual information 174

chunking [26], inhibition incompatible responses and choice 175

reactions [24], dual task interference [25], and complex deci- 176

sion making [26]. Moreover, applications of QN-MHP indicate 177

its success in modeling motor program retrieval [26], error 178

corrections [25], bimanual coordination in typing tasks, and 179

driver speed control [23], [26]. 180

B. Enhancements of Queuing Network-Model Human 181

Processor (QN-MHP) 182

In the present work, the mathematical model was proposed 183

based on architecture of QN-MHP to predict human perfor- 184

mance in speech warning responses with system operation 185

tasks (e.g., driving a vehicle) based on neurological findings 186

[34]–[38], [42]–[49]. Although several mathematical models 187

based on the QN-MHP have been successfully built to predict 188

driver behaviors such as speed and lateral control, the model to 189

predict human responses to speech warning is still missing. The 190

highlighted servers with labels in Fig. 1 illustrated the servers 191

to be enhanced with the equations developed in the current 192

work and the processing of speech warnings with the “Flow 193

of Entities.” 194



IEE
E P

ro
of

ZHANG et al.: MODELING THE EFFECTS OF SPEECH WARNING CHARACTERISTICS ON HUMAN PERFORMANCE 3

Fig. 1. The enhanced servers of the QN-MHP architecture with the equations to be developed in the current work, and the general structure of QN-MHP (developed
in [20], [21], [24], and [27]; and all of the published mathematical equations in QN-MHP can be found at: http://www.acsu.buffalo.edu/~seanwu/QNMHPMath/
MathModelQNMHP_Online.htm).

In the speech warnings response task, the stimuli of speech195

warnings entered into the auditory perceptual subnetwork. The196

stimuli firstly arrived at Server 5, representing the middle and197

inner ear (common auditory processing). The parallel auditory198

pathways transmitted the auditory information through the199

neuron pathways from the dorsal/ventral cochlear nuclei to the200

inferior colliculus presented by Server 6 (auditory recognition)201

and from the ventral cochlear nucleus to the superior olivary202

complex represented by Server 7 (auditory location).203

Then the auditory information was integrated at Server 8,204

representing the primary auditory cortex and the planum tempo-205

rale (auditory recognition and location integration. The speech206

warnings with specific loudness and semantic features were207

then transmitted to the left-hemisphere posterior parietal cortex208

presented as Server B (phonological loop).209

A route choice located at Server B with a shorter route210

directly connecting to Server W (motor programs retrieval)211

representing basal ganglia, and a longer route connecting to212

Server C (central executive) and Server F (complex cognitive213

function), and eventually leading to Server W. The shorter214

route represented a processing in emergent situations and the215

longer route involved the stage of hazard evaluation in less216

emergent situations. Those motor programs at Server W were217

then assembled at Server Y (motor program assembling and218

error detecting) and initialized at Server Z representing primary219

motor cortex, sending out the neural signals to body parts220

(Servers 21–25).221

1) Modeling the Effect of Speech Warning Parameters on the222

Probability of Route Choice in Reinforcement Learning: The223

modeled routes in QN-MHP were presented in Fig. 1. As it224

showed at Server B, entities could choose one of the two routes225

to move to either Server C (long route) or Server W (short226

route). The division of the two routes was modeled with the 227

route choice at Server B. Previous fMRI studies indicate two 228

stages involved in processing warning signal words associated 229

with hazards [28]. One stage is a rapid automatic activity and 230

the other stage involves the activation of the hazard evaluation. 231

The rapid automatic activity with a shorter response time to 232

warnings could be represented by the shorter route (Route I) 233

of warning responses learned through experiences in urgent 234

situations [29], [30]. The other activity involving a hazard 235

evaluation process could be represented by the longer route 236

(Route II) of warning responses learned through experiences 237

in non-urgent situations [35]. To process information with 238

Route II, the human would take a longer time to respond as 239

more servers were involved in this route. In the meantime, the 240

human would have a lower error rate of responses since entities 241

were processed through critical servers (Servers C and F) could 242

correct errors to a certain degree. 243

The probability of choosing a route could be the result of 244

learning from the connections of warning characteristics and 245

associated hazards in daily life. Previous fMRI studies showed 246

that people learned responses to auditory stimuli with a co- 247

activation of the motor/premotor cortex and the primary audi- 248

tory cortex [31]. As the neuron in motor and premotor cortex 249

(Server W) fired repeatedly when the human processed associ- 250

ated warnings, the correlation of neuronal firing of connected 251

cortical cells was translated into their connection strength [32]. 252

At the beginning of the learning, entities of speech warnings 253

with different loudness levels or signal words might have equal 254

chances to enter either route. Then the probability of route 255

choosing would be updated as humans learned from association 256

between specific loudness levels/signal words and urgency of 257

hazards. 258

http://www.acsu.buffalo.edu/~seanwu/QNMHPMath/MathModelQNMHP_Online.htm
http://www.acsu.buffalo.edu/~seanwu/QNMHPMath/MathModelQNMHP_Online.htm
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Whether a situation was considered to be an emergency was259

determined by certain criteria of loudness levels and signal260

words. In terms of warning loudness, Blumenthal [33] reported261

that a 50% probability threshold of a startle response was262

85 dB. Studies have shown the increasing of the acoustic263

stimuli intensity leads to an increase in response magnitude264

and amplitude, and a decrease in response onset latency [34].265

For signal word choices, different signal words expressed dif-266

ferent perceived urgency levels (Hollander & Wogalter, 2000).267

Therefore, speech warnings with its loudness higher than 85 dB268

or a particular signal word (e.g. “Danger”) would represent an269

emergency situation.270

Moreover, the incompatibility of warning loudness and word271

semantics indicating different hazard urgency levels took longer272

time for human to respond [28]. This incompatibility might273

result in entities traveling through a longer route (Route II) with274

higher chance in order to solve the incompatibility problem275

[35]. The probabilities of choosing route I (pI) and route II276

(pII) for speech warnings with certain loudness levels and277

signal words were obtained from the simulation results (see Q278

online learning algorithms in the Appendix).279

2) Modeling the Effect of Speech Warning Characteristics280

on the Warning Perception, Memory Decay and Hazard Evalu-281

ation: The choices of servers and where to integrate equations282

were determined by the brain area are influenced by warning283

characteristics. Studies suggested loudness and signal word284

choice have significant effects on human behaviors [36]–[39]. It285

has been shown that the activation of lower auditory processing286

level increased with the sound level increased [40]. Therefore,287

the effect of loudness on speech warning perception was mod-288

eled at Server 6. The semantic features of signal words are289

recognized at the superior temporal sulcus, which was modeled290

at Server 8 [41].291

Due to the interference caused by the speech warnings on292

the on-going tasks, memory decay may occur [42]. The effect293

of warning lead time on memory decay was modeled in the294

working memory system regarding auditory processing repre-295

sented by Servers B and C. Previous fMRI studies indicated296

that hazard evaluation activated the medial prefrontal cortex,297

the inferior frontal gyrus, the cerebellum, and the amygdale298

[43], which were presented by Server F.299

III. MATHEMATICAL FORMULATION OF MODELING300

MECHANISMS AND THE ENHANCEMENT OF THE QN-MHP301

A. Modeling the Effects of Loudness and Signal Word Choice302

on Perceived Urgency and Annoyance of Speech Warnings303

1) Modeling the Relationship Between Loudness and Per-304

ceived Urgency/Annoyance: The relations between changes in305

loudness and changes in perceived urgency can be quantified by306

the Stevens Power Law [38]. The loudness was reported having307

a positive relationship with urgency expression [44]. Therefore,308

the perceived urgency (UL) and annoyance (AL) as a function309

of warning loudness was modeled by the following equations:310

log(UL) = mU log(L) + kU + ε1 (1)

log(AL) = mA log(L) + kA + ε2 (2)

where L denotes the loudness level and m and k quantify the 311

relationship between perceived value and objective loudness 312

change. The relationship between intensity and perceived ur- 313

gency/annoyance was quantified [44]. The Stevens’ power law 314

states that the loudness (L) is proportional to I0.3, where I is 315

the sound intensity [45]. Therefore, the parameters are quan- 316

tified as: mU = 1.33, mA = 1.45, kU = −0.64, kA = −0.91. 317

ε1 and ε2 are normally distributed random factors following 318

distribution [0, 0.7] and [0, 0.86], respectively [36]. 319

2) The Relationship Between Signal Word Choice and Per- 320

ceived Urgency: Considerable research efforts have been in- 321

dicating a stable relationship between signal word choice and 322

perceived urgency. Hollander & Wogalter (2000) reported rat- 323

ings in carefulness expressed in a descending order by the 324

following five signal words: deadly, danger, warning, caution 325

and notice. Other studies have found similar results. These 326

words covered a wide range of urgency ratings and have been 327

studied before in detail (Barzegar & Wogalter, 1998; Hollander 328

& Wogalter, 2000) using the word “notice” rather than “note.” 329

The perceived urgency of “danger,” “caution,” and “notice” 330

spoken by a female voice on a 100 points scale are quantified 331

as 90.53,72.40, and 46.81 [44]. 332

B. Modeling the Error Rate in Speech Warning Responses 333

Speech warning parameters have different influence on 334

speech warning response error rate in different stages of speech 335

warning responses. When humans processed speech warnings 336

through route I, the error rate was mainly influenced by the 337

effects of loudness and signal words on speech warning percep- 338

tion. When speech warnings were processed through route II, 339

the error rate in the speech warning responses was also influ- 340

enced by the effects of lead time on potential memory decay of 341

the speech warnings and hazard evaluation. 342

1) Modeling the Effect of Loudness and Signal Word Choice 343

on Error Rate: Errors in speech warning responses could result 344

from the shortcoming of perception, memory, cognition and 345

the failure in motor execution [46]. Errors in speech warning 346

responses include no responses to correct warnings (e.g., fail- 347

ures in recognizing speech warnings and misjudging hazards 348

associated with warnings) or incorrect responses to warnings 349

(e.g., accelerating instead of braking towards a forward colli- 350

sion). The error rate (IE) is modeled as a function of the speech 351

warning loudness and signal word choice and the corresponding 352

probability of route choices. A warning with higher urgency is 353

correlated with higher arousal strength, which may result in a 354

startle reflex and lead to a higher chance of poorly processing 355

the warning signal words [28]. This autonomic activity can be 356

represented as entities traveling through route I with a higher 357

chance of making errors such that entities are not processed 358

in critical Server C and Server F. Both loudness and semantic 359

features relevant to the expressed urgency of the speech warn- 360

ings have influence on error rate in the perception of speech 361

warnings [47]. Also, a positive correlation between loudness 362

and error rate was found in an empirical study [48]. The error 363

rate in route I is then modeled with a positive correlation 364

with perceived urgency expressed by word loudness and word 365

semantics. 366
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The entity processed through route II involves the central367

executive and hazard evaluations at Servers C and F. The effect368

of loudness on error in response would decrease after the entity369

passed the phonological loop due to the decay of the echoic370

memory [52]. Further processing of the entity led to pattern371

recognition or semantic analysis of the speech warnings (at372

Server C) and the corresponding hazard was evaluated in the373

decision making stage (at Server F) [28], [49]. Therefore, the374

error rate in route II was modeled with a correction of errors375

brought in by the loudness and semantic properties of the376

speech warnings in the perceptive stage of speech warnings.377

In summary, the error rate (IE,i) of route i (i = I or II)378

is modeled with the following equation (3) with the perceived379

urgency (UL) and annoyance (AL) of speech warnings due to380

different loudness levels, and the perceived urgency of speech381

warnings due to different signal words (US). Since there is no382

difference of perceived annoyance due to different signal words383

(AS), it is not inputted in modeling the error rate384

IE,i =

{
(UL + US)× 0.5, i = I

(UL −AL)× 0.5, i = II
(3)

where L is the speech warnings loudness and S is the signal385

words. UL and AL are the perceived urgency and annoyance386

of warning loudness obtained from (1) and (2); US is the387

urgency of signal word choice. According to the perceived388

urgency for signal word scales, the perceived urgency for word389

semantics (US) is 0.90, 0.72 or 0.47 for signal words “Danger,”390

“Caution,” “Notice,” respectively [44].391

The overall error rate in the responses to speech warnings is392

then modeled by adding up the error rate with the probability393

in each route. The effect of speech warning parameters on route394

choice error rate (IE) can be modeled as the combined effect395

of the speech warning loudness and signal word choice:396

IE =
2∑

i=1

IE,i × pi (4)

where IE,i denotes the error rate when a speech warning397

travels through route i. pi denotes the probability of information398

processing through route i.399

Then the equation (4) for the effect of speech warning400

loudness and signal word choice on error rate (IE) is updated401

by the following general equation:402

IE = (LmU × 10kU−2 + US)× 0.5 × pI

+
(
(LmU × 10kU−2 − LmA × 10kA−2

)
× 0.5 × pII (5)

where L denotes the loudness level in dB. US is the perceived403

urgency level with different signal word choice. pI and pII are404

probabilities of choosing route I (the shorter route) and route II405

(the longer route) respectively obtained from the simulation406

results of the reinforcement learning in Appendix. mU and kU407

are parameters to quantify the power law of perceived urgency408

and loudness. mA and kA are parameters to quantify the power409

law of perceived annoyance and loudness.410

2) Modeling the Impact of Lead Time on Error Rate: Drivers 411

tend to respond to the speech warning when the corresponding 412

hazard is within sight [13]. When there is a relatively long 413

lead time before the actual hazard occurrence, the human 414

may perform normal operations and monitor the situation. 415

Therefore, the memory of the speech warnings may decay 416

and the corresponding accuracy rate of upcoming hazard es- 417

timation may increase the error rate in responses to speech 418

warnings. 419

The probability of information retrieving (p) is modeled as a 420

function of time (t) starting from the information presented to 421

humans in [42] as follows: 422

p = eat, [42] (6)

where a = −0.02 based on parameter settings of MHP [50]. 423

In the proposed speech warning responses model, the effect 424

of lead time on memory decay (IMD) is computed at Servers B 425

and C in QN-MHP, representing the working memory system 426

regarding auditory information processing 427

IMD =
1

e−0.02tlead
. (7)

In the above equation, tlead denotes the lead time for speech 428

warning responses. 429

In terms of hazard estimation, a human will react to speech 430

warnings when a perceived hazard reaches a certain threshold. 431

The effect of hazard evaluation accuracy on error rate (IH) can 432

be modeled by the difference between the perceived value and 433

the actual value of the hazard in the following equation: 434

IH =
Hp

H0
(8)

whereHp denotes the perceived value of hazard andH0 denotes 435

the actual value of hazard. 436

In summary, the error rate (r) in speech warning responses 437

is extended by adding the effects of loudness and signal word 438

choice modeled in (5), and the effect of lead time modeled in 439

(7) and (8) as follows: 440

r = IE + IMD × IH + ε3 (9)

where IE denotes the error from signal word perception and 441

recognition under the effect of speech warning loudness and 442

signal word choice, IMD denotes the error from memory decay, 443

IH denotes the error from hazard location estimation. ε3 is a 444

random factor following normal distribution [0, 0.1] [51]. 445

C. Modeling the Reaction Time in Speech Warning Responses 446

The reaction time was defined as the time duration from the 447

time the speech warning occurs to the time the human starts 448

to react. As assumed in QN-MHP, entity processing time at 449

an individual server is independent of arrivals of entities, and 450

routing is independent of the state of the system. Therefore, the 451

reaction time of a speech auditory stimulus can be modeled by 452

summarizing the processing time of all the servers on the route. 453
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Consequently, the reaction time (RTi) to speech warnings454

through route i is modeled as:455

RTi =

⎧⎪⎨
⎪⎩
T5 + T6 + T8 + TB + TW + TY + TZ , i = I

T5 + T6 + T8 + TB + TC + TF + TC

+TW + TY + TZ i = II
(10)

where Tk is the processing time of auditory stimulus at Server456

k. The processing time of servers in perceptual, cognitive, and457

motor subnetwork are 42 ms, 24 ms, and 18 ms [24].458

The effect of loudness on reaction time is modeled in the459

initial processing of auditory stimuli in Server 6460

T6 =
T6(0)

UL
(11)

where T6(0) is the initial entity processing time in Server 6 and461

UL denotes the effect of loudness on perceived urgency.462

The effect of signal word choice on reaction time can be463

modeled by the following equation:464

T8 =
T8(0) × ni

Us
(12)

where T8(0) is the entity processing time in Server 8 and ni is465

the number of words in the ith speech warning. Us denotes the466

urgency level expressed by the initial words (e.g., signal words)467

in the speech warnings.468

All in all, the equation (10) for modeling reaction time of469

speech warnings through route i is updated as:470

RT =

(
T5 +

T6(0)

UL
+

T8(0)

Us
+ TB + TW + TY + TZ

)

× pI +

(
T5 +

T6(0)

UL
+

T8(0)

Us
+ TB + TC + TF

+TC + TW + TY + TZ

)
× pII + ε4. (13)

In the above, Tk denotes the processing time of the auditory471

stimulus at Server k (k = 5−8, B, C, F,W−Z). UL is the472

perceived urgency level with different levels of loudness. pI473

and pII are probabilities of choosing route I (the shorter route)474

and route II (the longer route), respectively. ε4 is a normally475

distributed random factor following distribution [0, 0.3] [13].476

D. The Application of Speech Warning Response Model in477

Driving and Warning Responses478

The following section presents the application of the speech479

warning responses model in modeling human responses to480

speech warnings in Transportation CPS systems (e.g., in-481

vehicle information systems and connected vehicle communi-482

cation systems). Warning responses in a driving task include the483

releasing of the accelerator pedal when drivers are accelerating484

and the change in braking pedal when drivers are already485

braking (i.e., foot on brake pedal) or on their way to brake (i.e.,486

releasing the accelerator). The parameters of speech warnings487

are loudness and signal word choice, as well as lead time.488

The drivers tend to respond once the speech warning begins 489

when they hear the signal words (e.g. “Notice,” “Caution,” 490

“Warning,” and “Danger”). QN-MHP was used to estimate the 491

reaction to the speech warnings starting from perceiving the 492

information from speech warnings to transmit neural signals to 493

the foot server (Server 25). 494

1) The Hazard Evaluation in the Driving and Speech Warn- 495

ing Responses Tasks: When the speech warnings are presented 496

to a driver, he/she will continuously evaluate the potential haz- 497

ard based on the information obtained from visual perception 498

and from speech warnings (e.g., estimated distance). Previous 499

work studied the effects of motion factors (e.g., optical flow 500

rate, optical density of texture and edge rage) and cognitive 501

factors (e.g., perceived time, actual speed) on the traversed 502

distance estimation [52]–[54]. Traveling speed had a significant 503

effect on distance estimation, with slower speed resulting in 504

more accurate distance estimation. The relationship between 505

actual distance and estimated traversed distance (DP ) was 506

quantified with Steven’s power law [55] 507

DP = Dbv

0 (14)

where D0 denotes the actual distance between the current 508

position of warning receiving vehicle and the potential hazard 509

location when speech warning is presented, while v denotes 510

the instant speed (b = 0.955) [55]. Based on the definition, the 511

actual distance D0 is modeled as: 512

D0 = v0tlead +
1
2
a0t

2
lead. (15)

When the perceived distance is shorter than the minimum 513

safety headway, drivers may react to the speech warnings 514

directly. Otherwise, drivers continue to drive and react to speech 515

warnings until perceived distance (Dp) reaches the threshold 516

(Dp = Dh). The hazard evaluation effect on crash rate is 517

modeled as 518

IH =
Dh

D0
= Dbv(t)−1

0 . (16)

The instant speed (v) and acceleration (at) at time t is 519

modeled in [23] as follows: 520

v(t) = v0 + at(Δt), [23] (17)

where v0 denotes the initial speed and at denotes the accelera- 521

tion at time t. 522

The constant rate of deceleration (at(Δt)) is modeled in [56] 523

as follows: 524

at(Δt) =
k

2
× φ× θ̇

θ
, [56] (18)

where φ is the global optic flow rate of the textured ground 525

surface, a proportion of speed as long as eye height is constant. 526

The global optic flow rate is constant in a braking task. The ratio 527

θ̇/θ, where θ and θ̇ are the optical angle and rate of expansion 528

of approached object, respectively, is approximately equal to 529

v/S. Therefore, the ideal deceleration can be expressed in terms 530

of the optical variable by substituting φ for v and θ̇/θ for 531
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v/S. Novices tended to initiate emergency braking earlier than532

necessary when initial speed was slow and to a lesser extent,533

which brought in a parameter k of driving experiences (0 <534

k < 1). The parameter k is quantified by the annual mileage535

divided by a maximum value of annual mileage in general.536

The ratio of the object’s optical angle to rate of expansion of537

approached object (θ̇/θ) specifies the time-to-collision (TTC)538

with the object as long as the current velocity is held constant.539

The ratio is modeled in [57] as follows:540

θ̇

θ
= TTC, [57]. (19)

The perceived time-to-collision (TTCp) will be affected by541

the existence of the lead vehicle. TTC is the actual time to542

collision that the vehicle will be able to avoid a collision543

without exceeding the assumed maximum deceleration, which544

is represented as tlead as above545

θ̇

θ
= TTCp = tlead × exp(LV ). (20)

In the above, LV is a dichotomous variable of the lead546

vehicle in order to model the effect of the lead vehicle on TTCp547

(0 = without lead vehicle; 1 = with lead vehicle).548

In summary, the effect of hazard evaluation on crash rate is549

modeled as:550

IH =
Dp

D0
= Dbv0+ k

2
×φ× TTCp−1

0

=

(
v0tlead +

1
2
a0t

2
lead

)bv0+k
2
×φ×tlead×exp(LV )−1

. (21)

2) Modeling the Crash Rate in Speech Warning Responses:551

The modeling of crash rate has to consider the additional552

impact of warning lead time. Even if the driver makes correct553

responses, lack of time to respond will also result in accidents.554

When the lead time is shorter than the minimum brake-to-555

maximum response time (tmin), the drivers may not avoid556

the collision even when they correctly respond immediately.557

Therefore an effect of lead time on crash rate is modeled as:558

tmin =
v0

aaverage
+RT =

v0
1
2 |a0 + amax|

+RT (22)

ILT =
tmin

tlead
. (23)

The impact of parameters (i.e., loudness and signal word559

choice) of speech warning on crash rate (Rcrash) can be mod-560

eled by combining Equations (5), (21), (23) as follows:561

Rcrash = IE + IMD × IH × ILT + ε5 (24)

where IE denotes the error from signal word perception and562

recognition under the effect of speech warning loudness and563

signal word choice, IMD denotes the error from memory decay,564

IH denotes the error from hazard location estimation. ILT565

denotes the effect of lead time on crash rate. ε5 is a nor-566

mally distributed random factor following normal distribution567

[0, 0.05] [14].568

IV. THE VALIDATION OF THE SPEECH WARNING 569

RESPONSE MODEL 570

In order to validate the speech warning responses model, the 571

following section provides the prediction results of two experi- 572

mental studies in terms of driver responses to speech warnings. 573

The first study conducted by our research group studied the 574

effect of lead time on driver responses to speech warnings. In 575

order to validate the model, the model predictions for response 576

time and crash rate are shown and compared to experimental 577

data. The second study from a published work examined the 578

effect of loudness and signal word choice of warnings on rear- 579

end collision [58]. Due to a lack of detailed information in 580

the second study, the lead time and hazard evaluation was 581

assumed to have no additional effect on modeling crash rate. 582

The model predictions for crash rate and subjective ratings for 583

perceived urgency and annoyance are shown and compared to 584

experimental data. To validate the speech warning response 585

model, the comparability of model predictions and experimen- 586

tal results were quantified by the Pearson correlation coefficient 587

(R squared) as well as the root mean-squared error (RMSE). 588

A. Experiment 1 589

The first experiment involving a driving simulator was con- 590

ducted to study the impact of lead time on human responses to 591

speech warnings. 592

1) Participants: Thirty-two participants (24 males, 8 fe- 593

males),draftrules with ages ranging from 18 to 26 years par- 594

ticipated in the study. All of them were licensed drivers and 595

had normal or corrected-to-normal vision. None of the drivers 596

had previously participated in any simulator or crash avoidance 597

studies. 598

2) Apparatus: A STISIM driving simulator (STISIMDRIVE 599

M100K, Systems Technology Inc, Hawthorne, CA) was used in 600

the study. It comprises a Logitech Momo steering wheel with 601

force feedback (Logitech Inc, Fremont, CA), a throttle pedal, 602

and a brake pedal. The STISIM simulator was installed on a 603

Dell Workstation with a 256 MB PCIe × 16 nVidia graphics 604

card, Sound Blaster X-Fi system, and Dell A225 Stereo System. 605

Driving scenarios were presented on a 27-inch LCD with 606

1920 × 1200 pixel resolution. A speaker in front of the partic- 607

ipant provided auditory messages in a digitized human female 608

voice with a speech rate of ∼150 words/min and loudness level 609

of ∼70 dB. Another speaker provided driving sound effects 610

with a loudness level of ∼55 dB. 611

The behavioral measures (time elapsed (s), speed (m/s), 612

acceleration (m/s2), and distance to the initial location where 613

the scenario starts (m) were automatically collected from the 614

driving simulator and outputted to another identical Dell Work- 615

station. This computer calculates the time to collision (TTC) in 616

real time based on the vehicle’s speed and acceleration. When 617

the calculated TTC reached the designed value, the warning 618

would be issued. 619

3) Scenario Setting: The speech warning would sound be- 620

fore the appearance of the hazard. Each speech warning started 621

with a signal word “Caution” and followed by a description of 622

the collision scenario presented (e.g., A vehicle at your front- 623

left is running red light). The collision scenario description 624
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Fig. 2. The comparison of model prediction of crash rate with experiment 1
data (Error bars: +/−1 SE).

comprised the hazard location and event, which provided the625

driver with specific information to eliminate any confusion.626

The test block used a two-lane (in each direction) urban627

environment with traffic lights and road signs. There were628

running vehicles moving in each direction. Speed limit signs629

with a constant speed limit of 45 mph (20 m/s) were displayed630

200 feet (61 m) in front of the driver. Participants were in-631

structed to adjust their speed within the range from 40 mph632

(18 m/s) to 50 mph (22 m/s) as if they were driving a vehicle633

in the real world. Sixteen collision scenarios were designed and634

programmed. A lead vehicle would run at the same speed as635

the subject vehicle. In order to investigate drivers’ responses636

to speech warnings, their sights of the collision scenario were637

blocked by other vehicles, and participants could only rely on638

the warnings to learn about the upcoming collision events.639

4) Experiment Design: The current experiment adopted a640

one-factor experiment design with lead time as an independent641

variable and collision rate and brake-to-maximum response642

time as dependent variables. The lead time had 16 levels (0 s,643

1 s, 1.5 s, 2 s, 2.5 s, 3 s, 3.5 s, 4 s, 4.5 s, 5 s, 6 s, 8 s, 10 s,644

15 s, 30 s, and 60 s). When the lead time was 0, the warning645

sounded at the same time when the collision event happened.646

Each subject would go through sixteen collision events with647

sixteen levels of lead time assigned to each event. The orders of648

levels of lead time and events were randomized. The normal649

messages were randomly assigned during the experiment, as650

long as they did not cause interference with the broadcasting651

of speech warnings.652

The first dependent variable was collision, which specified653

whether there was collision between a subject’s vehicle and a654

hazard vehicle. The collision rate was then calculated as the655

percentage of collisions for each level of lead time. Brake-656

to-maximum response time represented the time period from657

the present of warnings until drivers reaching the maximum658

deceleration in the braking responses.659

5) Results: The model prediction for crash rate with speech660

warnings of different lead time levels is shown in Fig. 2. The661

RMSE was 0.13 with an R square of 0.94. For the brake-to-662

maximum response time to the speech warnings, Fig. 3 showed663

the model prediction comparing the experimental results had an664

R square of 0.97 and RMSE of 3.17.665

Fig. 3. The prediction of brake-to-maximum response time to the speech
warnings (Error bars: +/−1 SE).

Fig. 4. The comparison of model prediction of crash rate with experiment data
(no data of standard error reported in the experiment).

B. Experiment 2 (Baldwin & May, [64]) 666

The second experimental study examined the effect of loud- 667

ness and signal word choice of in-vehicle collision warnings 668

on driver responses [64]. Thirty participants were recruited to 669

drive through five different scenarios containing five different 670

hazard events. Speech warnings consisted of the signal word 671

“Notice” or “Danger” presented at either 70 or 85 dBA. The 672

driving sound effects were presented with a loudness level of 673

55 dB. The crash rate with different warnings and subjective 674

rating of perceived urgency and annoyance were reported. 675

Due to a lack of detailed information regarding collision 676

event scenario and driver responses, the lead time was set up 677

to be long enough for effective responses in this study since 678

there is no lead time reported (ILT = 1). The model prediction 679

for crash rate with different speech warnings is shown in Fig. 4. 680

The RMSE was 0.06 with an R square of 0.90. Fig. 5 shows 681

the model prediction of rating of urgency and annoyance for 682

signal word. The R square of perceived urgency prediction 683

is 1.00 with RMSE of 1.49. The R square of annoyance is 684

not calculated since there is no differences among annoyance 685

ratings of signal words [42]. 686

V. THE APPLICATION OF PREDICTION OF HUMAN 687

PERFORMANCE IN DEVELOPING SPEECH WARNINGS 688

Speech warnings in Transportation Cyber-Physical Systems 689

are designed to improve driver safety by providing informa- 690

tion about upcoming hazards in an appropriate way so as to 691
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Fig. 5. The prediction of rating of urgency and annoyance for signal words
(Error bar: standard deviation).

give drivers enough time to respond. Previous work mainly692

studied speech warning characteristics through experimental693

approaches [19], [64]. The developed model in the current694

work makes it easier for designers to obtain the effects of695

different speech warning parameters associated with human696

performance. In particular, the warning lead time, loudness and697

signal word choice can be optimized by applying the developed698

model to simulate human performance. Taking the intelligent699

transportation system as an example, the crash rate will serve700

as the objective index of potential safety benefit of the speech701

warnings.702

Based on abovementioned modeling results, the model pre-703

dicted that crash rate would vary with different combinations704

of lead time, loudness and signal words. Equation (21) is705

applied to quantify collision rate under different combinations706

of loudness and signal words with the common noise loudness707

level of 55 dBA. The threshold of intelligibility (TI) is at the708

loudness level of 47 dBA, which was defined as the “level709

at which the listener is just able to obtain without perceptible710

effort the meaning of almost every sentence and phrase of the711

connected discourse” [65]. A human, therefore, will not fully712

recognize and understand warnings with loudness levels below713

this threshold. The predicted impact of loudness and signal714

words on crash rate shown in Fig. 6 illustrate the loudness level715

with range from 47 to 85 dBA with a lead time of zero as an716

example. The best loudness level to present the signal word717

“Notice” is 85 dBA, whereas the best loudness level for other718

signal words is 47 dBA. It is implied that the combination of719

speech warnings with an intermediate urgency level brought the720

most safety benefits.721

The joint effect of lead time and warning loudness level722

is shown with the signal word “Caution” (see Fig. 7) as an723

example. Likewise, the joint effect of lead time and warning724

signal words is shown with the loudness level of 70 dBA (see725

Fig. 8). The predicted crash rate has a descending trend as a726

function of lead time regardless of the impact of loudness level727

and signal words. Generally speaking, it suggested that early728

warnings resulted in lower crash rates than did late warnings.729

As it is shown in Fig. 8, an abrupt decrease of collision rate730

appeared with longer lead time when the warning was relatively731

Fig. 6. Predicted crash rate with speech warnings presented at different loud-
ness levels with different signal words.

late; the rate of such decrease tended to slow down when 732

the warning was relatively early. The differences in crash rate 733

between different loudness levels and signal words reduced 734

when the lead time was longer. In other words, the impact of 735

loudness and the signal word choice on human responses will 736

decay with the processing of the speech warnings. 737

Future software can be designed based on the developed 738

models in this work to specify the loudness and signal word 739

choice of speech warnings in the Transportation Cycle-Physical 740

Systems. A sample interface is shown in Fig. 9. With the 741

loudness, signal words and number of words in the speech 742

warnings inputting into the software, the designers of the 743

warning system will be able to obtain the objective parameters 744

regarding human responses, including the predicted crash rate 745

and brake-to-maximum warning response time. Moreover, the 746

subjective rating of the speech warnings could also be obtained 747

by applying this model. 748

VI. DISCUSSION 749

In this modeling work, mathematical equations were built 750

within the framework of the Queuing Network Model Human 751

Processor (QN-MHP) to predict human performance in speech 752

warning responses, including human error rate and response 753

time with different warning characteristics. No free parameters 754

were used in the parameter setting. The validation of the model 755

with two laboratory studies indicated its relatively good ability 756

to predict performances in speech warning response with high 757

correlations with behavioral data from two experiments [64]. 758

This work is one of a few mathematical models with analytic 759

solutions in the field of human speech processing. Previous 760

modeling work has explored theories that account for the ex- 761

perimental data of word recognition and speech comprehension 762

[66, 67]. In the review of word recognition models, most 763

modeling work focuses on the mechanism of speech recogni- 764

tion with either verbal models (e.g., COHORT) or simulation 765

models with descriptions of theory implemented in computer 766

programs (e.g., TRACE) [22], [68, 69]. Compared to verbal or 767

simulation models, the conciseness and rigor of mathematical 768

models allows an easier implementation for different systems 769

regardless of the computer language used in the system. 770

More importantly, few computational models focused on the 771

prediction of human performance in speech warning responses 772
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Fig. 7. Predicted crash rate with speech warnings presented at different lead time level and loudness levels (using signal words “Caution”).

Fig. 8. Predicted crash rate with speech warnings presented at different lead time level and different signal words (at loudness levels = 70 dBA).

Fig. 9. The sample interface of the software with the application of the model.

and considered the characteristics of speech warnings. The773

neighborhood activation model focused on the prediction of774

the unique time point of word recognition [70]. The models775

that do model human performance (e.g., [71]) haven’t predicted776

response error rate. In the current work, humans were respond-777

ing to warnings associated with driving tasks rather than that778

to isolated words. In this case, the modeled process involves779

the hazard evaluation associated speech warnings and the se-780

lection of proper manual responses with the effects of warning781

characteristics being modeled. This different emphasis on hu-782

man response modeling is important in the design of trans-783

portation CPS, since such systems have to consider how human784

respond to speech warnings by changing their operating behav- 785

ior under the influence of different warning characteristics. 786

Although this study was carefully prepared, there are still 787

several limitations. First of all, the model was mainly validated 788

with accident rates and response time since the published work 789

only reported the accident rate as the objective index of warning 790

response performance. Further work is needed to validate the 791

detailed levels of the proposed model. Secondly, although the 792

proposed mathematical model provides a promising tool to 793

predict the effects of loudness of speech warnings on human 794

performance, the influence of other acoustic properties, like 795

frequency and pitch, and the threshold of intelligibility were 796

not modeled. For example, the warning presented with a higher 797

pitch (e.g., female voice) may have a different impact on human 798

performance and subjective rating on warning urgency than 799

that of a lower pitch (e.g., male voice). Meanwhile, there 800

might be interactions between signal word choice and other 801

acoustic factors. The current work assumed that the perceived 802

urgency expressed by different signal words is relatively stable, 803

but the perceived urgency might vary with the signal words 804

presented at different pitch and frequency levels. To enhance 805

the model in predicting speech warning acoustics and semantic 806

properties on human behaviors, further work is needed to model 807

the interaction among acoustic properties and the interaction 808

between signal word choice and other acoustic properties. 809

Furthermore, the current QN-MHP model did not account for 810

individual differences, but may significantly contribute to the 811

model application. For example, although the model predicted 812

optimal lead time, loudness level and signal word for speech 813
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Fig. 10. The simulation results of route choice for warnings with different
loudness level and signal words.

warnings, personality (e.g., aggressive vs. conservative drivers)814

may affect a driver’s responses to speech warnings. Ideally, fu-815

ture model should consider individual differences and provide816

different system design suggestions according to individual817

characteristics instead of an average driver.818

APPENDIX819

THE Q ONLINE LEARNING ALGORITHM AND MODELING820

OF LEARNING PROCESS821

The Q online learning algorithm will be integrated with822

the QN-MHP to model the learning in route choice under the823

influence of warning loudness and word choice. The effect824

of speech warning parameters on reaction time (IRT,i) and825

response error rate (IE,i) is then modeled with the different826

route choices in the information processing. As it presented827

in the following equations (Equations 9.2 and 9.3,) [21], the828

choice of route is based on the updated Q value Qt+1
(i,j) in each829

transition:830

Qt+1
T (i,j) = Qt

T (i,j) + ε

{
r′t + γmax

k

[
Qt

T (i,k)

]
−Qt

T (i,j)

}
[21]

(25)

Qt+1
E(i,j) = Qt

E(i,j) + ε

{
r′′t + γmax

k

[
Qt

E(i,k)

]
−Qt

E(i,j)

}
[21]

(26)

where Qt+1
(i,j) is the online Q value if entity routes from server831

i to server j in t+ 1th transition. maxk[Q
t
(i,k)] denotes the832

maximum Q value routing from server j to next k servers833

(k ≤ 1); rt is the reward; γ is the discount parameter of routing834

to next server (0 < γ < 1). The time-saving reward (r′t) is835

modeled as r′t = (1/wq) + μj,t, where wq is the waiting time in836

the queuing at the server; the error-saving reward r′′t is modeled837

as r′′t = (1/(Nerror(j,t) + 1)), where Nerror(j,t) is the number838

of action errors of the previous entities made in the next server839

j at tth transition840

Nerror(j,t) = Nerror(j,t) + 1 × L/100 × US .

Both Qt+1
E(i,j) and Qt+1

T (i,j) will contribute to the survival841

chance when human respond to warnings toward a potential842

hazard. Therefore, the choice of routes is determined by the843

sum of two Q values. Currently, it is assumed that Q value844

of the error-saving reward and the Q value of the time-saving845

reward has the same priority. If Qt+1
E(i,j) +Qt+1

T (i,j) > Qt+1
E(i,k) +846

Qt+1
T (i,k), the entity will choose server j; if Qt+1

E(i,j) +Qt+1
T (i,j) <847

Qt+1
E(i,k) +Qt+1

T (i,k), the entity will choose server k; and if 848

Qt+1
E(i,j) +Qt+1

T (i,j) = Qt+1
E(i,k) +Qt+1

T (i,k), the entity will choose 849

the next server (j or k) randomly. The simulation results of 850

probability of route choices is shown in Fig. 10. 851
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Mathematical Modeling of the Effects of Speech
Warning Characteristics on Human Performance

and Its Application in Transportation
Cyberphysical Systems

1

2

3

4

Yiqi Zhang, Changxu Wu, Member, IEEE, and Jingyan Wan5

Abstract—Transportation cyberphysical systems (CPSs) aim to6
improve driving safety by informing drivers of hazards with warn-7
ings in advance. The understanding of human responses to speech8
warnings is essential in the design of transportation CPSs to elim-9
inate hazards and accidents. To date, many works have addressed10
diverse warning characteristics with experimental approaches.11
However, the computational model to quantify the effects of warn-12
ing characteristics on human performance in responses to speech13
warnings is still missing. Mathematical equations were built to14
model the effects of lead time, loudness, and signal word choices15
on human perceptual, cognitive, and motor activities involved in16
speech warning responses. Different levels of lead time, levels of17
loudness, and signal word choices served as inputs in the model18
to predict human error rate and reaction time of speech warning19
responses. The model was validated with drivers’ crash rates20
and reaction times to speech warnings of upcoming hazards in21
driving assistant systems in two empirical studies. Results show22
a good prediction of human performance in responding to speech23
warnings compared with the empirical data. The application of24
the model to identify optimal parameter settings in the design of25
speech warnings in order to achieve greater safety benefits is later26
discussed.27

Index Terms—Human performance modeling, human–28
computer interaction, intelligent transportation systems.29

I. INTRODUCTION30

D EATHS and injuries resulting from road traffic accidents31

has become a major public health problem. According32

to statistic data published by the National Highway Traffic33

Safety Administration (NHTSA) in U.S., 5.3 million crashes34

occurred nationally in 2011 [1]. With regard to improve driving35

safety, recent advances in Transportation Cyber-Physical36

Systems (CPS) aim to establish a connected transportation en-37

vironment by monitoring the status of the physical worlds (e.g.,38

sensors and actuators), connecting it with the cyber worlds (e.g.,39

information, communication, and intelligence), and providing40
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the integrated real-time information among multiple levels, 41

including vehicles to vehicle communication, vehicle to in- 42

frastructures communication and in-vehicle information com- 43

munication [2]. Compared to conventional transportation 44

environment, the connectivity of the transportation CPS allows 45

drivers to learn about the traffic status out of their sight, and 46

provides them with more time to respond to warnings regarding 47

potential hazards [3]. 48

In order to improve the safety of both humans and vehi- 49

cles, as well as facilitate communication between them, it is 50

important to design warning characteristics based on human 51

performance. While work has been done to increase the com- 52

munication reliability of connected vehicles, the effectiveness 53

of such systems could not be achieved without drivers mak- 54

ing proper and timely responses. Therefore, modeling driver 55

responses to warnings is necessary to achieve effectiveness of 56

warning systems with the human in the loop. 57

Compared to non-speech auditory warnings, speech warn- 58

ings are more user-friendly since humans can easily understand 59

and differentiate warnings without specific trainings in memo- 60

rizing and recognizing warnings [4]. Previous work showed that 61

people working in an operation room had difficulties in recog- 62

nizing more than half of the non-speech warnings currently in 63

use [5]. Another study indicated that people were unable to 64

distinguish more than six complex warnings [6]. Moreover, pre- 65

vious work found that speech warnings led to a faster reaction 66

time than non-speech warnings regarding spatial information 67

[7]. As a consequence, speech warnings can be widely applied 68

to the Transportation CPS with different warnings in diverse 69

traffic situations. 70

To date, many empirical studies have examined the influence 71

of warning characteristics on human performance, such as 72

content, perceived hazard, familiarity, signal word, warning 73

sources, and number of items in speech warnings, on human be- 74

havior and performance [8]–[11]. Existing empirical has been 75

shown that warning lead time, loudness and signal word choice 76

have significant effects on driver responses to speech warnings. 77

Lead time is defined as the available time for responses from 78

the start of the speech warning until the occurrence of the 79

collision [12]. Studies showed early warnings led to shorter 80

reaction times to collisions than either middle or late warnings 81

[13]–[15]. The warning loudness was found to have a signif- 82

icant effect on urgency expression [16]. In terms of warning 83
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semantics, the different signal words chosen in speech warnings84

significantly influence a human’s judgment of the urgency level85

of a situation [17]. However, the behavioral approach used in86

existing empirical studies to assess the effectiveness of speech87

warnings can be highly task-dependent, time consuming, and88

high-cost. The modeling approach we adopted in the current89

work will provide the predictions of human performance under90

the different levels of the modeled warning characteristics by91

running the developed model, and help designers improve their92

warning designs in Transportation CPS.93

To our best knowledge, there are few mathematical models94

that predict human responses to speech warnings. Two major95

psycholinguistic models, the COHORT model and TRACE96

model, have described the mechanism of how human recognize97

and process spoken words in general. The COHORT model98

is a bottom-up verbal model that explains the lexical access99

for spoken word perception [18]. In the stage of activation,100

perception is influenced by auditory stimulation such that all101

words matching the perceived acoustic profile are activated,102

serving as a cohort. The selection stage refers to the process of103

selecting consistent input and eliminating candidate words that104

no longer match the input. Once the single candidate is isolated105

from the cohort, word recognition is accomplished. Unlike the106

COHORT model, the TRACE model is an interactive activated107

simulation model. The main feature of the model is the abil-108

ity to describe the interaction of units including within-level109

inhibition and between-level facilitation [19]. The cascaded110

activation mode in the TRACE model enables the activation111

word-level processing units sooner after the activation of the112

feature-level processing units. The word with the most support113

from the bottom layers will increase its activation until only114

one candidate is left standing. These two cognitive models laid115

the significant foundation on understanding the mechanism of116

speech perception and processing.117

However, the COHORT model and the TRACE model focus118

on the speech perception and recognition instead of human119

responses to speech. Therefore, they cannot be used to predict120

human performance in their responses to speech warnings.121

Meanwhile, both psycholinguistic models focus on general122

mechanism of speech processing rather than different character-123

istics of speech warnings so that they are not able to predict the124

effects of different characteristics of speech warnings on human125

responses. Moreover, neither COHORT nor TRACE model is126

a mathematical model. Mathematical models are indispensable127

to predict how human respond to speech warnings under the128

influence of warning characteristics in order to be applied129

in the design of transportation CPS. Therefore, new models130

are still needed to model how different characteristics of the131

speech warnings affect human responses with the mapping be-132

tween the meaning of speech warnings and the target response133

actions.134

The present work addresses this problem by developing a135

mathematical model to predict human responses to speech136

warnings in human–machine systems. This paper extended137

the model presented in [72] by integrating the algorithm of138

reinforcement learning in modeling the route choice in the139

processing of speech warnings and quantifying human reaction140

error rate and reaction time in speech warning responses. Three141

main speech-warning parameters are discussed: lead time, loud- 142

ness, and signal word choice. As the causes of accident in 143

reality can be very complex, the errors in initial responses 144

and the slowed responses to warnings are two of major causes 145

that leaded to traffic accidents. Therefore, accident rate is 146

modeled as the outputs of the model with this two causes being 147

considered and is tested with two empirical studies. In addition, 148

the applications of the model were discussed in setting up the 149

warning parameters to optimize the design of transportation 150

cyber-physical system in terms of human performance. The 151

interface of web-based software was proposed for designers as 152

an easy-to-use technology to design different speech warning 153

parameters associated with human performance. 154

II. MODELING MECHANISM AND MODEL ENHANCEMENT 155

A. Overview of Queuing Network-Model Human Processor 156

(QN-MHP) 157

Queuing Network-Model Human Processor (QN-MHP) is a 158

computational architecture that integrates three discrete serial 159

stages of human information processing (i.e., perceptual, cogni- 160

tive, and motor processing) into three continuous subnetworks 161

(see in Fig. 1). Each subnetwork is constructed of multiple 162

servers and links among these servers. Each individual server is 163

an abstraction of a brain area with specific functions, and links 164

among servers represent neural pathways among functional 165

brain areas. The neurological processing of stimuli is illustrated 166

in the transformation of entities passing through routes in 167

QN-MHP. Since this architecture was established, QN-MHP 168

has been applied to quantify various aspects of human cognition 169

and performance, such as human mental workload [20], and the 170

reinforcement learning process [21]. In terms of the perceptual 171

subnetwork, new equations have been integrated to model eye 172

movements, and speed perception [22], [23]. The cognitive 173

subnetwork has been improved to model textual information 174

chunking [26], inhibition incompatible responses and choice 175

reactions [24], dual task interference [25], and complex deci- 176

sion making [26]. Moreover, applications of QN-MHP indicate 177

its success in modeling motor program retrieval [26], error 178

corrections [25], bimanual coordination in typing tasks, and 179

driver speed control [23], [26]. 180

B. Enhancements of Queuing Network-Model Human 181

Processor (QN-MHP) 182

In the present work, the mathematical model was proposed 183

based on architecture of QN-MHP to predict human perfor- 184

mance in speech warning responses with system operation 185

tasks (e.g., driving a vehicle) based on neurological findings 186

[34]–[38], [42]–[49]. Although several mathematical models 187

based on the QN-MHP have been successfully built to predict 188

driver behaviors such as speed and lateral control, the model to 189

predict human responses to speech warning is still missing. The 190

highlighted servers with labels in Fig. 1 illustrated the servers 191

to be enhanced with the equations developed in the current 192

work and the processing of speech warnings with the “Flow 193

of Entities.” 194
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Fig. 1. The enhanced servers of the QN-MHP architecture with the equations to be developed in the current work, and the general structure of QN-MHP (developed
in [20], [21], [24], and [27]; and all of the published mathematical equations in QN-MHP can be found at: http://www.acsu.buffalo.edu/~seanwu/QNMHPMath/
MathModelQNMHP_Online.htm).

In the speech warnings response task, the stimuli of speech195

warnings entered into the auditory perceptual subnetwork. The196

stimuli firstly arrived at Server 5, representing the middle and197

inner ear (common auditory processing). The parallel auditory198

pathways transmitted the auditory information through the199

neuron pathways from the dorsal/ventral cochlear nuclei to the200

inferior colliculus presented by Server 6 (auditory recognition)201

and from the ventral cochlear nucleus to the superior olivary202

complex represented by Server 7 (auditory location).203

Then the auditory information was integrated at Server 8,204

representing the primary auditory cortex and the planum tempo-205

rale (auditory recognition and location integration. The speech206

warnings with specific loudness and semantic features were207

then transmitted to the left-hemisphere posterior parietal cortex208

presented as Server B (phonological loop).209

A route choice located at Server B with a shorter route210

directly connecting to Server W (motor programs retrieval)211

representing basal ganglia, and a longer route connecting to212

Server C (central executive) and Server F (complex cognitive213

function), and eventually leading to Server W. The shorter214

route represented a processing in emergent situations and the215

longer route involved the stage of hazard evaluation in less216

emergent situations. Those motor programs at Server W were217

then assembled at Server Y (motor program assembling and218

error detecting) and initialized at Server Z representing primary219

motor cortex, sending out the neural signals to body parts220

(Servers 21–25).221

1) Modeling the Effect of Speech Warning Parameters on the222

Probability of Route Choice in Reinforcement Learning: The223

modeled routes in QN-MHP were presented in Fig. 1. As it224

showed at Server B, entities could choose one of the two routes225

to move to either Server C (long route) or Server W (short226

route). The division of the two routes was modeled with the 227

route choice at Server B. Previous fMRI studies indicate two 228

stages involved in processing warning signal words associated 229

with hazards [28]. One stage is a rapid automatic activity and 230

the other stage involves the activation of the hazard evaluation. 231

The rapid automatic activity with a shorter response time to 232

warnings could be represented by the shorter route (Route I) 233

of warning responses learned through experiences in urgent 234

situations [29], [30]. The other activity involving a hazard 235

evaluation process could be represented by the longer route 236

(Route II) of warning responses learned through experiences 237

in non-urgent situations [35]. To process information with 238

Route II, the human would take a longer time to respond as 239

more servers were involved in this route. In the meantime, the 240

human would have a lower error rate of responses since entities 241

were processed through critical servers (Servers C and F) could 242

correct errors to a certain degree. 243

The probability of choosing a route could be the result of 244

learning from the connections of warning characteristics and 245

associated hazards in daily life. Previous fMRI studies showed 246

that people learned responses to auditory stimuli with a co- 247

activation of the motor/premotor cortex and the primary audi- 248

tory cortex [31]. As the neuron in motor and premotor cortex 249

(Server W) fired repeatedly when the human processed associ- 250

ated warnings, the correlation of neuronal firing of connected 251

cortical cells was translated into their connection strength [32]. 252

At the beginning of the learning, entities of speech warnings 253

with different loudness levels or signal words might have equal 254

chances to enter either route. Then the probability of route 255

choosing would be updated as humans learned from association 256

between specific loudness levels/signal words and urgency of 257

hazards. 258

http://www.acsu.buffalo.edu/~seanwu/QNMHPMath/MathModelQNMHP_Online.htm
http://www.acsu.buffalo.edu/~seanwu/QNMHPMath/MathModelQNMHP_Online.htm
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Whether a situation was considered to be an emergency was259

determined by certain criteria of loudness levels and signal260

words. In terms of warning loudness, Blumenthal [33] reported261

that a 50% probability threshold of a startle response was262

85 dB. Studies have shown the increasing of the acoustic263

stimuli intensity leads to an increase in response magnitude264

and amplitude, and a decrease in response onset latency [34].265

For signal word choices, different signal words expressed dif-266

ferent perceived urgency levels (Hollander & Wogalter, 2000).267

Therefore, speech warnings with its loudness higher than 85 dB268

or a particular signal word (e.g. “Danger”) would represent an269

emergency situation.270

Moreover, the incompatibility of warning loudness and word271

semantics indicating different hazard urgency levels took longer272

time for human to respond [28]. This incompatibility might273

result in entities traveling through a longer route (Route II) with274

higher chance in order to solve the incompatibility problem275

[35]. The probabilities of choosing route I (pI) and route II276

(pII) for speech warnings with certain loudness levels and277

signal words were obtained from the simulation results (see Q278

online learning algorithms in the Appendix).279

2) Modeling the Effect of Speech Warning Characteristics280

on the Warning Perception, Memory Decay and Hazard Evalu-281

ation: The choices of servers and where to integrate equations282

were determined by the brain area are influenced by warning283

characteristics. Studies suggested loudness and signal word284

choice have significant effects on human behaviors [36]–[39]. It285

has been shown that the activation of lower auditory processing286

level increased with the sound level increased [40]. Therefore,287

the effect of loudness on speech warning perception was mod-288

eled at Server 6. The semantic features of signal words are289

recognized at the superior temporal sulcus, which was modeled290

at Server 8 [41].291

Due to the interference caused by the speech warnings on292

the on-going tasks, memory decay may occur [42]. The effect293

of warning lead time on memory decay was modeled in the294

working memory system regarding auditory processing repre-295

sented by Servers B and C. Previous fMRI studies indicated296

that hazard evaluation activated the medial prefrontal cortex,297

the inferior frontal gyrus, the cerebellum, and the amygdale298

[43], which were presented by Server F.299

III. MATHEMATICAL FORMULATION OF MODELING300

MECHANISMS AND THE ENHANCEMENT OF THE QN-MHP301

A. Modeling the Effects of Loudness and Signal Word Choice302

on Perceived Urgency and Annoyance of Speech Warnings303

1) Modeling the Relationship Between Loudness and Per-304

ceived Urgency/Annoyance: The relations between changes in305

loudness and changes in perceived urgency can be quantified by306

the Stevens Power Law [38]. The loudness was reported having307

a positive relationship with urgency expression [44]. Therefore,308

the perceived urgency (UL) and annoyance (AL) as a function309

of warning loudness was modeled by the following equations:310

log(UL) = mU log(L) + kU + ε1 (1)

log(AL) = mA log(L) + kA + ε2 (2)

where L denotes the loudness level and m and k quantify the 311

relationship between perceived value and objective loudness 312

change. The relationship between intensity and perceived ur- 313

gency/annoyance was quantified [44]. The Stevens’ power law 314

states that the loudness (L) is proportional to I0.3, where I is 315

the sound intensity [45]. Therefore, the parameters are quan- 316

tified as: mU = 1.33, mA = 1.45, kU = −0.64, kA = −0.91. 317

ε1 and ε2 are normally distributed random factors following 318

distribution [0, 0.7] and [0, 0.86], respectively [36]. 319

2) The Relationship Between Signal Word Choice and Per- 320

ceived Urgency: Considerable research efforts have been in- 321

dicating a stable relationship between signal word choice and 322

perceived urgency. Hollander & Wogalter (2000) reported rat- 323

ings in carefulness expressed in a descending order by the 324

following five signal words: deadly, danger, warning, caution 325

and notice. Other studies have found similar results. These 326

words covered a wide range of urgency ratings and have been 327

studied before in detail (Barzegar & Wogalter, 1998; Hollander 328

& Wogalter, 2000) using the word “notice” rather than “note.” 329

The perceived urgency of “danger,” “caution,” and “notice” 330

spoken by a female voice on a 100 points scale are quantified 331

as 90.53,72.40, and 46.81 [44]. 332

B. Modeling the Error Rate in Speech Warning Responses 333

Speech warning parameters have different influence on 334

speech warning response error rate in different stages of speech 335

warning responses. When humans processed speech warnings 336

through route I, the error rate was mainly influenced by the 337

effects of loudness and signal words on speech warning percep- 338

tion. When speech warnings were processed through route II, 339

the error rate in the speech warning responses was also influ- 340

enced by the effects of lead time on potential memory decay of 341

the speech warnings and hazard evaluation. 342

1) Modeling the Effect of Loudness and Signal Word Choice 343

on Error Rate: Errors in speech warning responses could result 344

from the shortcoming of perception, memory, cognition and 345

the failure in motor execution [46]. Errors in speech warning 346

responses include no responses to correct warnings (e.g., fail- 347

ures in recognizing speech warnings and misjudging hazards 348

associated with warnings) or incorrect responses to warnings 349

(e.g., accelerating instead of braking towards a forward colli- 350

sion). The error rate (IE) is modeled as a function of the speech 351

warning loudness and signal word choice and the corresponding 352

probability of route choices. A warning with higher urgency is 353

correlated with higher arousal strength, which may result in a 354

startle reflex and lead to a higher chance of poorly processing 355

the warning signal words [28]. This autonomic activity can be 356

represented as entities traveling through route I with a higher 357

chance of making errors such that entities are not processed 358

in critical Server C and Server F. Both loudness and semantic 359

features relevant to the expressed urgency of the speech warn- 360

ings have influence on error rate in the perception of speech 361

warnings [47]. Also, a positive correlation between loudness 362

and error rate was found in an empirical study [48]. The error 363

rate in route I is then modeled with a positive correlation 364

with perceived urgency expressed by word loudness and word 365

semantics. 366
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The entity processed through route II involves the central367

executive and hazard evaluations at Servers C and F. The effect368

of loudness on error in response would decrease after the entity369

passed the phonological loop due to the decay of the echoic370

memory [52]. Further processing of the entity led to pattern371

recognition or semantic analysis of the speech warnings (at372

Server C) and the corresponding hazard was evaluated in the373

decision making stage (at Server F) [28], [49]. Therefore, the374

error rate in route II was modeled with a correction of errors375

brought in by the loudness and semantic properties of the376

speech warnings in the perceptive stage of speech warnings.377

In summary, the error rate (IE,i) of route i (i = I or II)378

is modeled with the following equation (3) with the perceived379

urgency (UL) and annoyance (AL) of speech warnings due to380

different loudness levels, and the perceived urgency of speech381

warnings due to different signal words (US). Since there is no382

difference of perceived annoyance due to different signal words383

(AS), it is not inputted in modeling the error rate384

IE,i =

{
(UL + US)× 0.5, i = I

(UL −AL)× 0.5, i = II
(3)

where L is the speech warnings loudness and S is the signal385

words. UL and AL are the perceived urgency and annoyance386

of warning loudness obtained from (1) and (2); US is the387

urgency of signal word choice. According to the perceived388

urgency for signal word scales, the perceived urgency for word389

semantics (US) is 0.90, 0.72 or 0.47 for signal words “Danger,”390

“Caution,” “Notice,” respectively [44].391

The overall error rate in the responses to speech warnings is392

then modeled by adding up the error rate with the probability393

in each route. The effect of speech warning parameters on route394

choice error rate (IE) can be modeled as the combined effect395

of the speech warning loudness and signal word choice:396

IE =

2∑
i=1

IE,i × pi (4)

where IE,i denotes the error rate when a speech warning397

travels through route i. pi denotes the probability of information398

processing through route i.399

Then the equation (4) for the effect of speech warning400

loudness and signal word choice on error rate (IE) is updated401

by the following general equation:402

IE = (LmU × 10kU−2 + US)× 0.5 × pI

+
(
(LmU × 10kU−2 − LmA × 10kA−2

)
× 0.5 × pII (5)

where L denotes the loudness level in dB. US is the perceived403

urgency level with different signal word choice. pI and pII are404

probabilities of choosing route I (the shorter route) and route II405

(the longer route) respectively obtained from the simulation406

results of the reinforcement learning in Appendix. mU and kU407

are parameters to quantify the power law of perceived urgency408

and loudness. mA and kA are parameters to quantify the power409

law of perceived annoyance and loudness.410

2) Modeling the Impact of Lead Time on Error Rate: Drivers 411

tend to respond to the speech warning when the corresponding 412

hazard is within sight [13]. When there is a relatively long 413

lead time before the actual hazard occurrence, the human 414

may perform normal operations and monitor the situation. 415

Therefore, the memory of the speech warnings may decay 416

and the corresponding accuracy rate of upcoming hazard es- 417

timation may increase the error rate in responses to speech 418

warnings. 419

The probability of information retrieving (p) is modeled as a 420

function of time (t) starting from the information presented to 421

humans in [42] as follows: 422

p = eat, [42] (6)

where a = −0.02 based on parameter settings of MHP [50]. 423

In the proposed speech warning responses model, the effect 424

of lead time on memory decay (IMD) is computed at Servers B 425

and C in QN-MHP, representing the working memory system 426

regarding auditory information processing 427

IMD =
1

e−0.02tlead
. (7)

In the above equation, tlead denotes the lead time for speech 428

warning responses. 429

In terms of hazard estimation, a human will react to speech 430

warnings when a perceived hazard reaches a certain threshold. 431

The effect of hazard evaluation accuracy on error rate (IH) can 432

be modeled by the difference between the perceived value and 433

the actual value of the hazard in the following equation: 434

IH =
Hp

H0
(8)

whereHp denotes the perceived value of hazard andH0 denotes 435

the actual value of hazard. 436

In summary, the error rate (r) in speech warning responses 437

is extended by adding the effects of loudness and signal word 438

choice modeled in (5), and the effect of lead time modeled in 439

(7) and (8) as follows: 440

r = IE + IMD × IH + ε3 (9)

where IE denotes the error from signal word perception and 441

recognition under the effect of speech warning loudness and 442

signal word choice, IMD denotes the error from memory decay, 443

IH denotes the error from hazard location estimation. ε3 is a 444

random factor following normal distribution [0, 0.1] [51]. 445

C. Modeling the Reaction Time in Speech Warning Responses 446

The reaction time was defined as the time duration from the 447

time the speech warning occurs to the time the human starts 448

to react. As assumed in QN-MHP, entity processing time at 449

an individual server is independent of arrivals of entities, and 450

routing is independent of the state of the system. Therefore, the 451

reaction time of a speech auditory stimulus can be modeled by 452

summarizing the processing time of all the servers on the route. 453



IEE
E P

ro
of

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Consequently, the reaction time (RTi) to speech warnings454

through route i is modeled as:455

RTi =

⎧⎪⎨
⎪⎩
T5 + T6 + T8 + TB + TW + TY + TZ , i = I

T5 + T6 + T8 + TB + TC + TF + TC

+TW + TY + TZ i = II
(10)

where Tk is the processing time of auditory stimulus at Server456

k. The processing time of servers in perceptual, cognitive, and457

motor subnetwork are 42 ms, 24 ms, and 18 ms [24].458

The effect of loudness on reaction time is modeled in the459

initial processing of auditory stimuli in Server 6460

T6 =
T6(0)

UL
(11)

where T6(0) is the initial entity processing time in Server 6 and461

UL denotes the effect of loudness on perceived urgency.462

The effect of signal word choice on reaction time can be463

modeled by the following equation:464

T8 =
T8(0) × ni

Us
(12)

where T8(0) is the entity processing time in Server 8 and ni is465

the number of words in the ith speech warning. Us denotes the466

urgency level expressed by the initial words (e.g., signal words)467

in the speech warnings.468

All in all, the equation (10) for modeling reaction time of469

speech warnings through route i is updated as:470

RT =

(
T5 +

T6(0)

UL
+

T8(0)

Us
+ TB + TW + TY + TZ

)

× pI +

(
T5 +

T6(0)

UL
+

T8(0)

Us
+ TB + TC + TF

+TC + TW + TY + TZ

)
× pII + ε4. (13)

In the above, Tk denotes the processing time of the auditory471

stimulus at Server k (k = 5−8, B, C, F,W−Z). UL is the472

perceived urgency level with different levels of loudness. pI473

and pII are probabilities of choosing route I (the shorter route)474

and route II (the longer route), respectively. ε4 is a normally475

distributed random factor following distribution [0, 0.3] [13].476

D. The Application of Speech Warning Response Model in477

Driving and Warning Responses478

The following section presents the application of the speech479

warning responses model in modeling human responses to480

speech warnings in Transportation CPS systems (e.g., in-481

vehicle information systems and connected vehicle communi-482

cation systems). Warning responses in a driving task include the483

releasing of the accelerator pedal when drivers are accelerating484

and the change in braking pedal when drivers are already485

braking (i.e., foot on brake pedal) or on their way to brake (i.e.,486

releasing the accelerator). The parameters of speech warnings487

are loudness and signal word choice, as well as lead time.488

The drivers tend to respond once the speech warning begins 489

when they hear the signal words (e.g. “Notice,” “Caution,” 490

“Warning,” and “Danger”). QN-MHP was used to estimate the 491

reaction to the speech warnings starting from perceiving the 492

information from speech warnings to transmit neural signals to 493

the foot server (Server 25). 494

1) The Hazard Evaluation in the Driving and Speech Warn- 495

ing Responses Tasks: When the speech warnings are presented 496

to a driver, he/she will continuously evaluate the potential haz- 497

ard based on the information obtained from visual perception 498

and from speech warnings (e.g., estimated distance). Previous 499

work studied the effects of motion factors (e.g., optical flow 500

rate, optical density of texture and edge rage) and cognitive 501

factors (e.g., perceived time, actual speed) on the traversed 502

distance estimation [52]–[54]. Traveling speed had a significant 503

effect on distance estimation, with slower speed resulting in 504

more accurate distance estimation. The relationship between 505

actual distance and estimated traversed distance (DP ) was 506

quantified with Steven’s power law [55] 507

DP = Dbv

0 (14)

where D0 denotes the actual distance between the current 508

position of warning receiving vehicle and the potential hazard 509

location when speech warning is presented, while v denotes 510

the instant speed (b = 0.955) [55]. Based on the definition, the 511

actual distance D0 is modeled as: 512

D0 = v0tlead +
1
2
a0t

2
lead. (15)

When the perceived distance is shorter than the minimum 513

safety headway, drivers may react to the speech warnings 514

directly. Otherwise, drivers continue to drive and react to speech 515

warnings until perceived distance (Dp) reaches the threshold 516

(Dp = Dh). The hazard evaluation effect on crash rate is 517

modeled as 518

IH =
Dh

D0
= Dbv(t)−1

0 . (16)

The instant speed (v) and acceleration (at) at time t is 519

modeled in [23] as follows: 520

v(t) = v0 + at(Δt), [23] (17)

where v0 denotes the initial speed and at denotes the accelera- 521

tion at time t. 522

The constant rate of deceleration (at(Δt)) is modeled in [56] 523

as follows: 524

at(Δt) =
k

2
× φ× θ̇

θ
, [56] (18)

where φ is the global optic flow rate of the textured ground 525

surface, a proportion of speed as long as eye height is constant. 526

The global optic flow rate is constant in a braking task. The ratio 527

θ̇/θ, where θ and θ̇ are the optical angle and rate of expansion 528

of approached object, respectively, is approximately equal to 529

v/S. Therefore, the ideal deceleration can be expressed in terms 530

of the optical variable by substituting φ for v and θ̇/θ for 531
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v/S. Novices tended to initiate emergency braking earlier than532

necessary when initial speed was slow and to a lesser extent,533

which brought in a parameter k of driving experiences (0 <534

k < 1). The parameter k is quantified by the annual mileage535

divided by a maximum value of annual mileage in general.536

The ratio of the object’s optical angle to rate of expansion of537

approached object (θ̇/θ) specifies the time-to-collision (TTC)538

with the object as long as the current velocity is held constant.539

The ratio is modeled in [57] as follows:540

θ̇

θ
= TTC, [57]. (19)

The perceived time-to-collision (TTCp) will be affected by541

the existence of the lead vehicle. TTC is the actual time to542

collision that the vehicle will be able to avoid a collision543

without exceeding the assumed maximum deceleration, which544

is represented as tlead as above545

θ̇

θ
= TTCp = tlead × exp(LV ). (20)

In the above, LV is a dichotomous variable of the lead546

vehicle in order to model the effect of the lead vehicle on TTCp547

(0 = without lead vehicle; 1 = with lead vehicle).548

In summary, the effect of hazard evaluation on crash rate is549

modeled as:550

IH =
Dp

D0
= Dbv0+ k

2
×φ× TTCp−1

0

=

(
v0tlead +

1
2
a0t

2
lead

)bv0+ k
2
×φ×tlead×exp(LV )−1

. (21)

2) Modeling the Crash Rate in Speech Warning Responses:551

The modeling of crash rate has to consider the additional552

impact of warning lead time. Even if the driver makes correct553

responses, lack of time to respond will also result in accidents.554

When the lead time is shorter than the minimum brake-to-555

maximum response time (tmin), the drivers may not avoid556

the collision even when they correctly respond immediately.557

Therefore an effect of lead time on crash rate is modeled as:558

tmin =
v0

aaverage
+RT =

v0
1
2 |a0 + amax|

+ RT (22)

ILT =
tmin

tlead
. (23)

The impact of parameters (i.e., loudness and signal word559

choice) of speech warning on crash rate (Rcrash) can be mod-560

eled by combining Equations (5), (21), (23) as follows:561

Rcrash = IE + IMD × IH × ILT + ε5 (24)

where IE denotes the error from signal word perception and562

recognition under the effect of speech warning loudness and563

signal word choice, IMD denotes the error from memory decay,564

IH denotes the error from hazard location estimation. ILT565

denotes the effect of lead time on crash rate. ε5 is a nor-566

mally distributed random factor following normal distribution567

[0, 0.05] [14].568

IV. THE VALIDATION OF THE SPEECH WARNING 569

RESPONSE MODEL 570

In order to validate the speech warning responses model, the 571

following section provides the prediction results of two experi- 572

mental studies in terms of driver responses to speech warnings. 573

The first study conducted by our research group studied the 574

effect of lead time on driver responses to speech warnings. In 575

order to validate the model, the model predictions for response 576

time and crash rate are shown and compared to experimental 577

data. The second study from a published work examined the 578

effect of loudness and signal word choice of warnings on rear- 579

end collision [58]. Due to a lack of detailed information in 580

the second study, the lead time and hazard evaluation was 581

assumed to have no additional effect on modeling crash rate. 582

The model predictions for crash rate and subjective ratings for 583

perceived urgency and annoyance are shown and compared to 584

experimental data. To validate the speech warning response 585

model, the comparability of model predictions and experimen- 586

tal results were quantified by the Pearson correlation coefficient 587

(R squared) as well as the root mean-squared error (RMSE). 588

A. Experiment 1 589

The first experiment involving a driving simulator was con- 590

ducted to study the impact of lead time on human responses to 591

speech warnings. 592

1) Participants: Thirty-two participants (24 males, 8 fe- 593

males),draftrules with ages ranging from 18 to 26 years par- 594

ticipated in the study. All of them were licensed drivers and 595

had normal or corrected-to-normal vision. None of the drivers 596

had previously participated in any simulator or crash avoidance 597

studies. 598

2) Apparatus: A STISIM driving simulator (STISIMDRIVE 599

M100K, Systems Technology Inc, Hawthorne, CA) was used in 600

the study. It comprises a Logitech Momo steering wheel with 601

force feedback (Logitech Inc, Fremont, CA), a throttle pedal, 602

and a brake pedal. The STISIM simulator was installed on a 603

Dell Workstation with a 256 MB PCIe × 16 nVidia graphics 604

card, Sound Blaster X-Fi system, and Dell A225 Stereo System. 605

Driving scenarios were presented on a 27-inch LCD with 606

1920 × 1200 pixel resolution. A speaker in front of the partic- 607

ipant provided auditory messages in a digitized human female 608

voice with a speech rate of ∼150 words/min and loudness level 609

of ∼70 dB. Another speaker provided driving sound effects 610

with a loudness level of ∼55 dB. 611

The behavioral measures (time elapsed (s), speed (m/s), 612

acceleration (m/s2), and distance to the initial location where 613

the scenario starts (m) were automatically collected from the 614

driving simulator and outputted to another identical Dell Work- 615

station. This computer calculates the time to collision (TTC) in 616

real time based on the vehicle’s speed and acceleration. When 617

the calculated TTC reached the designed value, the warning 618

would be issued. 619

3) Scenario Setting: The speech warning would sound be- 620

fore the appearance of the hazard. Each speech warning started 621

with a signal word “Caution” and followed by a description of 622

the collision scenario presented (e.g., A vehicle at your front- 623

left is running red light). The collision scenario description 624
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Fig. 2. The comparison of model prediction of crash rate with experiment 1
data (Error bars: +/−1 SE).

comprised the hazard location and event, which provided the625

driver with specific information to eliminate any confusion.626

The test block used a two-lane (in each direction) urban627

environment with traffic lights and road signs. There were628

running vehicles moving in each direction. Speed limit signs629

with a constant speed limit of 45 mph (20 m/s) were displayed630

200 feet (61 m) in front of the driver. Participants were in-631

structed to adjust their speed within the range from 40 mph632

(18 m/s) to 50 mph (22 m/s) as if they were driving a vehicle633

in the real world. Sixteen collision scenarios were designed and634

programmed. A lead vehicle would run at the same speed as635

the subject vehicle. In order to investigate drivers’ responses636

to speech warnings, their sights of the collision scenario were637

blocked by other vehicles, and participants could only rely on638

the warnings to learn about the upcoming collision events.639

4) Experiment Design: The current experiment adopted a640

one-factor experiment design with lead time as an independent641

variable and collision rate and brake-to-maximum response642

time as dependent variables. The lead time had 16 levels (0 s,643

1 s, 1.5 s, 2 s, 2.5 s, 3 s, 3.5 s, 4 s, 4.5 s, 5 s, 6 s, 8 s, 10 s,644

15 s, 30 s, and 60 s). When the lead time was 0, the warning645

sounded at the same time when the collision event happened.646

Each subject would go through sixteen collision events with647

sixteen levels of lead time assigned to each event. The orders of648

levels of lead time and events were randomized. The normal649

messages were randomly assigned during the experiment, as650

long as they did not cause interference with the broadcasting651

of speech warnings.652

The first dependent variable was collision, which specified653

whether there was collision between a subject’s vehicle and a654

hazard vehicle. The collision rate was then calculated as the655

percentage of collisions for each level of lead time. Brake-656

to-maximum response time represented the time period from657

the present of warnings until drivers reaching the maximum658

deceleration in the braking responses.659

5) Results: The model prediction for crash rate with speech660

warnings of different lead time levels is shown in Fig. 2. The661

RMSE was 0.13 with an R square of 0.94. For the brake-to-662

maximum response time to the speech warnings, Fig. 3 showed663

the model prediction comparing the experimental results had an664

R square of 0.97 and RMSE of 3.17.665

Fig. 3. The prediction of brake-to-maximum response time to the speech
warnings (Error bars: +/−1 SE).

Fig. 4. The comparison of model prediction of crash rate with experiment data
(no data of standard error reported in the experiment).

B. Experiment 2 (Baldwin & May, [64]) 666

The second experimental study examined the effect of loud- 667

ness and signal word choice of in-vehicle collision warnings 668

on driver responses [64]. Thirty participants were recruited to 669

drive through five different scenarios containing five different 670

hazard events. Speech warnings consisted of the signal word 671

“Notice” or “Danger” presented at either 70 or 85 dBA. The 672

driving sound effects were presented with a loudness level of 673

55 dB. The crash rate with different warnings and subjective 674

rating of perceived urgency and annoyance were reported. 675

Due to a lack of detailed information regarding collision 676

event scenario and driver responses, the lead time was set up 677

to be long enough for effective responses in this study since 678

there is no lead time reported (ILT = 1). The model prediction 679

for crash rate with different speech warnings is shown in Fig. 4. 680

The RMSE was 0.06 with an R square of 0.90. Fig. 5 shows 681

the model prediction of rating of urgency and annoyance for 682

signal word. The R square of perceived urgency prediction 683

is 1.00 with RMSE of 1.49. The R square of annoyance is 684

not calculated since there is no differences among annoyance 685

ratings of signal words [42]. 686

V. THE APPLICATION OF PREDICTION OF HUMAN 687

PERFORMANCE IN DEVELOPING SPEECH WARNINGS 688

Speech warnings in Transportation Cyber-Physical Systems 689

are designed to improve driver safety by providing informa- 690

tion about upcoming hazards in an appropriate way so as to 691
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Fig. 5. The prediction of rating of urgency and annoyance for signal words
(Error bar: standard deviation).

give drivers enough time to respond. Previous work mainly692

studied speech warning characteristics through experimental693

approaches [19], [64]. The developed model in the current694

work makes it easier for designers to obtain the effects of695

different speech warning parameters associated with human696

performance. In particular, the warning lead time, loudness and697

signal word choice can be optimized by applying the developed698

model to simulate human performance. Taking the intelligent699

transportation system as an example, the crash rate will serve700

as the objective index of potential safety benefit of the speech701

warnings.702

Based on abovementioned modeling results, the model pre-703

dicted that crash rate would vary with different combinations704

of lead time, loudness and signal words. Equation (21) is705

applied to quantify collision rate under different combinations706

of loudness and signal words with the common noise loudness707

level of 55 dBA. The threshold of intelligibility (TI) is at the708

loudness level of 47 dBA, which was defined as the “level709

at which the listener is just able to obtain without perceptible710

effort the meaning of almost every sentence and phrase of the711

connected discourse” [65]. A human, therefore, will not fully712

recognize and understand warnings with loudness levels below713

this threshold. The predicted impact of loudness and signal714

words on crash rate shown in Fig. 6 illustrate the loudness level715

with range from 47 to 85 dBA with a lead time of zero as an716

example. The best loudness level to present the signal word717

“Notice” is 85 dBA, whereas the best loudness level for other718

signal words is 47 dBA. It is implied that the combination of719

speech warnings with an intermediate urgency level brought the720

most safety benefits.721

The joint effect of lead time and warning loudness level722

is shown with the signal word “Caution” (see Fig. 7) as an723

example. Likewise, the joint effect of lead time and warning724

signal words is shown with the loudness level of 70 dBA (see725

Fig. 8). The predicted crash rate has a descending trend as a726

function of lead time regardless of the impact of loudness level727

and signal words. Generally speaking, it suggested that early728

warnings resulted in lower crash rates than did late warnings.729

As it is shown in Fig. 8, an abrupt decrease of collision rate730

appeared with longer lead time when the warning was relatively731

Fig. 6. Predicted crash rate with speech warnings presented at different loud-
ness levels with different signal words.

late; the rate of such decrease tended to slow down when 732

the warning was relatively early. The differences in crash rate 733

between different loudness levels and signal words reduced 734

when the lead time was longer. In other words, the impact of 735

loudness and the signal word choice on human responses will 736

decay with the processing of the speech warnings. 737

Future software can be designed based on the developed 738

models in this work to specify the loudness and signal word 739

choice of speech warnings in the Transportation Cycle-Physical 740

Systems. A sample interface is shown in Fig. 9. With the 741

loudness, signal words and number of words in the speech 742

warnings inputting into the software, the designers of the 743

warning system will be able to obtain the objective parameters 744

regarding human responses, including the predicted crash rate 745

and brake-to-maximum warning response time. Moreover, the 746

subjective rating of the speech warnings could also be obtained 747

by applying this model. 748

VI. DISCUSSION 749

In this modeling work, mathematical equations were built 750

within the framework of the Queuing Network Model Human 751

Processor (QN-MHP) to predict human performance in speech 752

warning responses, including human error rate and response 753

time with different warning characteristics. No free parameters 754

were used in the parameter setting. The validation of the model 755

with two laboratory studies indicated its relatively good ability 756

to predict performances in speech warning response with high 757

correlations with behavioral data from two experiments [64]. 758

This work is one of a few mathematical models with analytic 759

solutions in the field of human speech processing. Previous 760

modeling work has explored theories that account for the ex- 761

perimental data of word recognition and speech comprehension 762

[66, 67]. In the review of word recognition models, most 763

modeling work focuses on the mechanism of speech recogni- 764

tion with either verbal models (e.g., COHORT) or simulation 765

models with descriptions of theory implemented in computer 766

programs (e.g., TRACE) [22], [68, 69]. Compared to verbal or 767

simulation models, the conciseness and rigor of mathematical 768

models allows an easier implementation for different systems 769

regardless of the computer language used in the system. 770

More importantly, few computational models focused on the 771

prediction of human performance in speech warning responses 772



IEE
E P

ro
of

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 7. Predicted crash rate with speech warnings presented at different lead time level and loudness levels (using signal words “Caution”).

Fig. 8. Predicted crash rate with speech warnings presented at different lead time level and different signal words (at loudness levels = 70 dBA).

Fig. 9. The sample interface of the software with the application of the model.

and considered the characteristics of speech warnings. The773

neighborhood activation model focused on the prediction of774

the unique time point of word recognition [70]. The models775

that do model human performance (e.g., [71]) haven’t predicted776

response error rate. In the current work, humans were respond-777

ing to warnings associated with driving tasks rather than that778

to isolated words. In this case, the modeled process involves779

the hazard evaluation associated speech warnings and the se-780

lection of proper manual responses with the effects of warning781

characteristics being modeled. This different emphasis on hu-782

man response modeling is important in the design of trans-783

portation CPS, since such systems have to consider how human784

respond to speech warnings by changing their operating behav- 785

ior under the influence of different warning characteristics. 786

Although this study was carefully prepared, there are still 787

several limitations. First of all, the model was mainly validated 788

with accident rates and response time since the published work 789

only reported the accident rate as the objective index of warning 790

response performance. Further work is needed to validate the 791

detailed levels of the proposed model. Secondly, although the 792

proposed mathematical model provides a promising tool to 793

predict the effects of loudness of speech warnings on human 794

performance, the influence of other acoustic properties, like 795

frequency and pitch, and the threshold of intelligibility were 796

not modeled. For example, the warning presented with a higher 797

pitch (e.g., female voice) may have a different impact on human 798

performance and subjective rating on warning urgency than 799

that of a lower pitch (e.g., male voice). Meanwhile, there 800

might be interactions between signal word choice and other 801

acoustic factors. The current work assumed that the perceived 802

urgency expressed by different signal words is relatively stable, 803

but the perceived urgency might vary with the signal words 804

presented at different pitch and frequency levels. To enhance 805

the model in predicting speech warning acoustics and semantic 806

properties on human behaviors, further work is needed to model 807

the interaction among acoustic properties and the interaction 808

between signal word choice and other acoustic properties. 809

Furthermore, the current QN-MHP model did not account for 810

individual differences, but may significantly contribute to the 811

model application. For example, although the model predicted 812

optimal lead time, loudness level and signal word for speech 813
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Fig. 10. The simulation results of route choice for warnings with different
loudness level and signal words.

warnings, personality (e.g., aggressive vs. conservative drivers)814

may affect a driver’s responses to speech warnings. Ideally, fu-815

ture model should consider individual differences and provide816

different system design suggestions according to individual817

characteristics instead of an average driver.818

APPENDIX819

THE Q ONLINE LEARNING ALGORITHM AND MODELING820

OF LEARNING PROCESS821

The Q online learning algorithm will be integrated with822

the QN-MHP to model the learning in route choice under the823

influence of warning loudness and word choice. The effect824

of speech warning parameters on reaction time (IRT,i) and825

response error rate (IE,i) is then modeled with the different826

route choices in the information processing. As it presented827

in the following equations (Equations 9.2 and 9.3,) [21], the828

choice of route is based on the updated Q value Qt+1
(i,j) in each829

transition:830

Qt+1
T (i,j) = Qt

T (i,j) + ε

{
r′t + γmax

k

[
Qt

T (i,k)

]
−Qt

T (i,j)

}
[21]

(25)

Qt+1
E(i,j) = Qt

E(i,j) + ε

{
r′′t + γmax

k

[
Qt

E(i,k)

]
−Qt

E(i,j)

}
[21]

(26)

where Qt+1
(i,j) is the online Q value if entity routes from server831

i to server j in t+ 1th transition. maxk[Q
t
(i,k)] denotes the832

maximum Q value routing from server j to next k servers833

(k ≤ 1); rt is the reward; γ is the discount parameter of routing834

to next server (0 < γ < 1). The time-saving reward (r′t) is835

modeled as r′t = (1/wq) + μj,t, wherewq is the waiting time in836

the queuing at the server; the error-saving reward r′′t is modeled837

as r′′t = (1/(Nerror(j,t) + 1)), where Nerror(j,t) is the number838

of action errors of the previous entities made in the next server839

j at tth transition840

Nerror(j,t) = Nerror(j,t) + 1 × L/100 × US .

Both Qt+1
E(i,j) and Qt+1

T (i,j) will contribute to the survival841

chance when human respond to warnings toward a potential842

hazard. Therefore, the choice of routes is determined by the843

sum of two Q values. Currently, it is assumed that Q value844

of the error-saving reward and the Q value of the time-saving845

reward has the same priority. If Qt+1
E(i,j) +Qt+1

T (i,j) > Qt+1
E(i,k) +846

Qt+1
T (i,k), the entity will choose server j; if Qt+1

E(i,j) +Qt+1
T (i,j) <847

Qt+1
E(i,k) +Qt+1

T (i,k), the entity will choose server k; and if 848

Qt+1
E(i,j) +Qt+1

T (i,j) = Qt+1
E(i,k) +Qt+1

T (i,k), the entity will choose 849

the next server (j or k) randomly. The simulation results of 850

probability of route choices is shown in Fig. 10. 851
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