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Abstract—The risk of vehicle collisions significantly increases
when drivers are overloaded with information from in-vehicle sys-
tems. One of the solutions to this problem is developing adaptive
workload management systems (AWMSs) to dynamically control
the rate of messages from these in-vehicle systems. However, ex-
isting AWMSs do not use a model of the driver cognitive system
to estimate workload and only suppress or redirect in-vehicle
system messages, without changing their rate based on driver
workload. In this paper, we propose a prototype of a new queue-
ing network-model human processor AWMS (QN-MHP AWMS),
which includes a queueing network model of driver workload
that estimates the driver workload in several driving situations
and a message controller that determines the optimal delay times
between messages and dynamically controls the rate of messages
presented to drivers. Given the task information of a secondary
task, the QN-MHP AWMS adapted the rate of messages to the
driving conditions (i.e., speeds and curvatures) and driver char-
acteristics (i.e., age). A corresponding experimental study was
conducted to validate the potential effectiveness of this system
in reducing driver workload and improving driver performance.
Further development of the QN-MHP AWMS, including its use in
in-vehicle system design and possible implementation in vehicles,
is discussed.

Index Terms—Adaptive system, driver workload, queueing net-
work, workload management.

I. INTRODUCTION

W ITH THE development of in-vehicle system technology,
increasingly more in-vehicle information and entertain-

ment systems (e.g., navigation aides, mobile phones, e-mail,
web browsers, vehicle-to-vehicle communication systems, and
traffic information displays) are being used in vehicles. Mul-
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titasking between driving and using these systems may im-
pose high information load on drivers, increasing their mental
workload [1]–[3], which, in turn, increases the risk of vehicle
collisions, compared with a single-task driving condition [1],
[4]. Multitasking has also become particularly common for
drivers with special duties. For example, police officers need
to drive, communicate with other police officers, and monitor
the speed of other cars via radar systems at the same time;
ambulance drivers need to steer vehicles, navigate their vehicle
to patients’ locations, and communicate with dispatchers and
hospitals at the same time; and fire-fighting vehicle drivers
also need to steer and navigate vehicles to target locations
and communicate with their headquarters at the same time to
receive updates on the situation of target locations.

After Michon [5] proposed the basic concepts in designing an
adaptive system for drivers, recently, several adaptive workload
management systems (AWMSs) have been developed as one of
the possible solutions in reducing driver mental workload [6]
(see Table I). Some available systems include BMW’s phone
adaptive system [6] and Toyota’s voice adaptive system [7] (see
reviews in [8] and [9]). There are two important components in
these systems: First, to estimate driver workload, these adaptive
systems collect current driving information, such as steering
wheel angle and lane position, and then use computational
algorithms to directly estimate the current workload of the
driver. In addition to these estimations of the workload, re-
searchers can also use subjective workload questionnaires or
psychophysiological measurement (e.g., event-related poten-
tial) to estimate the workload; however, these subjective and
psychophysiological measurements either require subjects to
perform additional tasks or attach certain electrodes onto the
human body, making them very difficult to use in practical situ-
ations. Second, based on these estimations of driver workload,
the systems propose corresponding actions to reduce driver
workload, e.g., suppressing messages from in-vehicle systems
[7] or redirecting messages into a voice mailbox when the
driver’s estimated mental workload is high [6].

There are two important aspects in the human factors of
these AWMSs that need further improvement: First, at the
human end, a cognitive model of the driver might be useful
in estimating a driver’s workload in a multitasking situation.
Such a model may particularly be useful for the quantification
of the effects of driving situations (e.g., speed and road curve),
characteristics of drivers (e.g., age), and secondary tasks on the
driver workload (e.g., the processing time of the secondary task
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TABLE I
SUMMARY OF FOUR AWMSs

in different components, i.e., perceptual, cognitive, and motor
components, of the cognitive system). Second, at the system
end, an all-or-nothing solution (suppressing or redirecting mes-
sages from the in-vehicle systems) might be too simplistic.
A more general solution might be to treat the temporal delay
between messages as a continuous variable (ranging from 0
to infinite), whose value is set, depending on various driving
situations. In addition, if the in-vehicle messages are controlled
by a driver’s response, there are two potential problems: The
drivers need additional actions to turn on (or off) the device, and
drivers may not be able to manage or prioritize messages from
the in-vehicle and the primary task (see a review by Haigney
and Westerman [11] discussing the effects of concurrent mobile
phone use on driving).

In this paper, we propose a new queueing network-model
human processor AWMS (QN-MHP AWMS) that includes two
components: 1) a model of the driver workload for estimating
it based on research on cognitive modeling and 2) a message
controller (MC) that determines the optimal delay times be-
tween messages and dynamically controls the rate of messages
in various driving situations. In Section II, we describe the
driver workload model (QN-MHP) in general, including its
advantages in simulating driver workload. In Section III, we
propose a prototype of this new AWMS (QN-MHP AWMS).
Sections IV and V illustrate the first component in the QN-
MHP AWMS, i.e., how the QN-MHP can be used to simulate
driver workload and performance in an example of multitasking
in driving. Section VI describes the second component in the
QN-MHP AWMS, i.e., the detailed algorithms in the MC for
determining the optimal delay times between messages. We
also conducted a corresponding experimental study to validate
the potential effectiveness of this system in reducing driver
workload (See Section VII).

II. QUEUEING NETWORK MODELING OF HUMAN

PERFORMANCE AND MENTAL WORKLOAD

Along the line of research on developing unified theories
of cognition advocated by Newell [12], we have been making
steady progress in developing a queueing network architec-
ture for human performance modeling [13]–[19]. Mathematical
models based on queueing networks have successfully inte-
grated a large number of mathematical models in response
time [13] and in multitask performance [14] as special cases

of queueing networks. As a computational model, we have es-
tablished a bridge between the mathematical models of queue-
ing networks and the symbolic models of cognition with our
queueing network architecture called the QN-MHP [16]–[20]
(see Figs. 1 and 2). QN-MHP is a simulation model of a queue-
ing network mental architecture that represents information
processing in the cognitive system as a queueing network based
on neuroscience and psychological findings. Ample research
evidence has shown that major brain areas with certain informa-
tion processing functions are localized and connected with each
other via neural pathways [21]–[23], which is highly similar to
a queueing network of servers that can process entities traveling
through the routes serially or/and in parallel, depending on
specific network arrangements. Therefore, brain regions with
similar functions can be regarded as servers, and the neural
pathways connecting them are treated as routes in the queueing
network (see Figs. 1 and 2). The information being processed
in the network is represented by entities traveling in the
network.

The QN-MHP represents its overall architecture as a queue-
ing network, which is a major branch of mathematics and op-
erations research, thus allowing comprehensive mathematical
modeling. Furthermore, each of the QN-MHP servers is capable
of performing procedure logic functions, allowing it to gener-
ate detailed task actions and simulate real-time behavior. For
multitask performance modeling, a unique characteristic of the
QN-MHP is its ability to model concurrent activities without
the need either to interleave the production rules of concurrent
tasks into a serial program or for executive process(es) to in-
teractively control (lock/unlock) the task processes. The model
has successfully been applied to quantify human performance
in a variety of tasks, including simple and choice RT (RT)
[24], transcription typing [17], [25], visual manual tracking
[19], [26], psychological refractory period (PRP) [27], visual
search [28], mental workload [16], [19], and a driving task of
steering and map reading [20]. For a detailed description of
the rationale, assumptions, structure, and implementation of the
QN-MHP and how to use it in multitask modeling, see [20].
Simulation of human performance in a task requires three steps:
1) Model the environment (e.g., road curvatures); 2) analyze
the task using an NGOMSL-Style method; and 3) perform
simulation and analyze the simulation results.

In addition to modeling human performance in these tasks,
the QN-MHP is also used to predict and account for mental
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Fig. 1. General structure of the queueing network model [16]–[20].

Fig. 2. Approximate mapping of the servers in the queueing network model
onto the human brain [16]–[19].

workload. Among various models in quantifying mental work-
load, the QN-MHP is able to cover many important features
of it, including its multidimensional properties [16], workload
in both single and dual tasks [17], [19], age difference [29],
prediction of subjective workload measured by NASA-TLX
[16], [30], prediction of physiological workload reflected by the
amplitude and latency of the P300 component (which are mea-
sured by event-related brain potential techniques [19]), [26],
and workload visualization [18] (see Table II for a summary
of the properties of workload modeled by the QN-MHP in
comparison with other modeling approaches).

In the work of Wu and Liu [16], the subjective ratings of
the workload in the six subscales in NASA-TLX were modeled

using the following three equations:

PD = Aa



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dt


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dt


 /3T + b (3)

where PD (physical demand), TD (temporal demand), EF
(effort), PE (performance), FR (frustration), and MD (mental
demand) represent the subjective rating of the workload of
the six dimensions/subscales in NASA-TLX. A is the aging
factor (A = 1 for young subjects); T is the total task time of
each trial; λ is the arrival rate of the subnetwork, and Ci is the
total number of servers in the subnetwork; µ0,j is the original
processing speed of server j for young adults in the QN-MHP;
and a and b are constants in representing the direct proportional
relation between the averaged utilizations and subjective
responses (a > 0). The values of these parameters are obtained
via the simulation model. In other words, when the QN-MHP
simulates a certain type of task, the equations implemented
in the simulation model can generate the prediction of mental
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TABLE II
COVERAGE OF THE EXISTING MODELS IN ACCOUNTING FOR THE MAJOR FEATURES OF MENTAL WORKLOAD

Fig. 3. Prototype of the QN-MHP AWMS.

workload (see a movie of this simulation process at http://www.
acsu.buffalo.edu/~changxu/). The predictions of mental
workload using these computational models have been
validated with an empirical study [16]. Equation (2) is also used
to predict the overall workload in various tasks. The equations
and the simulation model of driver workload developed in
the previous work provide a quantitative estimation of mental
workload compared to qualitative models of workload and
cognitive resources (e.g., Wicken’s multiple resources theory).

As a continuation of our previous work, the current study
focuses on the application of the simulation model (QN-MHP)
and mathematical equations of mental workload into AWMS
design and validates the potential effectiveness of the system
in reducing the workload with an experimental study.

III. DESIGNING A PROTOTYPE OF THE QN-MHP AWMS

The purpose of the QN-MHP AWMS is to regulate the rate
of messages from the in-vehicle systems, based on the driving
condition and properties of the secondary task, to effectively
reduce driver workload. Fig. 3 shows the prototype of the

adaptive system, which is composed of two parts: the QN-MHP
and the MC. The QN-MHP AWMS receives three types of
information: 1) driving conditions (e.g., current driving speed
and curvatures); 2) the properties of a secondary task related to
in-vehicle systems (e.g., the processing time at the perceptual,
cognitive, and motor stages); and 3) the properties of the driver
(e.g., age and level of driving experience).

Given the task information of a certain type of in-vehicle task
(box 2 in Fig. 3), the QN-MHP simulates the driver workload
and performance, depending on various driving conditions (box
1), and then, the MC determines the optimal delay times be-
tween messages and regulates the rate of messages in real time
and outputs the messages to the driver (box 3) based on the sim-
ulation results (see the message flow from in-vehicle systems to
the QN-MHP AWMS and then to the driver in Fig. 3).

In the following sections, the two components of the QN-
MHP AWMS are described in detail, including how the QN-
MHP can be used to simulate driver workload and performance
in an example of multitasking (Sections IV and V) and the
detailed algorithms in the MC for determining optimal delay
times (Section VI).
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IV. EXAMPLE OF MULTITASKING IN DRIVING

WITH PRACTICAL IMPORTANCE

According to a report from NHTSA’s National Center for
Statistics and Analysis, speeding is one of the most preva-
lent factors contributing to automobile crashes. The economic
cost to society of speeding-related crashes is estimated by
the NHTSA to be $40.4 billion per year; in 2004, speeding
was a contributing factor in 30% of all fatal crashes, and
13 192 lives were lost in speeding-related crashes [36], [37].
Traffic law enforcement (police officers detecting speeding and
issuing speeding tickets) is one of the most critical measures for
preventing speeding. However, aside from detecting speeding,
police officers also have to perform other tasks at the same
time, e.g., communicating with dispatchers and navigating the
vehicle to a target location. Based on an informal interview
with four police officers at the Public Safety Service Center
at the University of Michigan, it was found that one of their
representative multitasking scenarios is performing the two
tasks given here while steering the vehicle.

1) Speeding detection or judgment task (subtask 1): Officers
need to read two numbers on a display of an in-vehicle
radar system mounted on the dashboards of police vehi-
cles. The first number is the speed of a target vehicle mea-
sured by the radar system; the second is the distance from
the police vehicle to the target vehicle. Whether the target
vehicle is speeding is determined by both the speed and
the distance. For example, on a road with a speed limit of
55 mi/h, if the speed is between 56 and 64 mi/h and the
distance is less than 100 yd, it is speeding; if the distance
is more than 100 yd, it is judged as not speeding. On
the other hand, independent of the distance, if the speed
is above 65 mi/h, it is speeding; if the speed is below
55 mi/h, it is not speeding.

2) Radio message response task (Subtask 2): Messages re-
ceived by the officers usually come from multiple sources
(headquarters, other police officers, and maintenance),
and the officers need to respond to higher priority mes-
sages (e.g., from headquarters) by pressing a button on
the radio.

The most frequent order of these two tasks, based on the
interview, is the radar speeding detection task, followed by the
message response task (the duration between the presentation
of the numbers in the speed detection and the presentation
of the voice message of the message response task is called
“message delay time” or “Delay” in this paper).1,2 This sample
multitasking scenario of police officers was also inspired by
the ALERT project of the Texas Transportation Institute, which
focused on the development of an integrated interface of various
devices (radar detection system, radio, video recording sys-
tems, etc.) for police officers to improve their performance and
safety [41].

1Since the sample task is composed of a pair of two subtasks, i.e., the speed-
ing detection task (RTs), followed by the message response task (RTm), the
reaction time of the secondary task (ST ) as a representative performance index
of the whole secondary task is defined as ST = (RTs + RTm)/2.

2This message delay time in the majority of multitasking cases, based on the
interview, is longer than 3 s.

This sample multiple-task simulation can also be generalized
into other multitasking situations in driving since it captures
several important characteristics of multitasking in driving:
1) It considers one of the most important variables in multitask-
ing, i.e., the delay time between the presentations of informa-
tion for different tasks; the delay time is similar to stimuli onset
asynchrony (SOA) in PRP, which is the most basic form of mul-
titasking (SOA is the temporal delay between the presentations
of the stimuli of two choice reaction tasks). 2) Multitasking
information in driving is typically presented in a multimodal
format: either through the visual (e.g., looking at a map or a
display of a navigation system) or the auditory modality (e.g.,
listening to messages from cellular phones or warning systems).
3) It covers perceptual, cognitive, and motor processing in
multitasking. For example, the speed-detection task might be
similar to a secondary task in using a navigation system while
driving: Drivers read directions for and the distance to the next
turn from the display (perceptual processing), perform mental
calculations to decide whether and when to switch to a different
lane (cognitive processing), and possibly engage the turning
signal and turn the steering wheel (motor processing).

V. SIMULATION OF MULTIPLE TASKS IN

DRIVING WITH THE QN-MHP

A. Simulation Using the QN-MHP

Following the steps described in simulating human per-
formance and workload using the QN-MHP [16], [20], the
multiple tasks in driving were simulated as follows:

To model the driver workload and performance, the input to
the model was modified to represent the following: 1) a road
with two levels of curvature (straight and curves of 250-m
radius) and 2) the driving speed (45 and 65 mi/h). The task
analysis of a driving task was described in the work of Liu et al.
[20] in detail. The standard deviation (SD) of the lateral position
in the model originates from the competition of the entities (the
entities of the driving task and the entities of the secondary task)
in getting the service of the servers in the network.

To model the secondary task, a new input to the model was
added to represent the stimuli of the secondary task based on its
arrival interval (i.e., the message delay time). An NGOMSL-
style task analysis was performed so that the model could route
and process the entities (information) among different servers
in the network (see Table III; each step in the NGOMSL-
Style corresponds to an operator in the model, and the op-
erators determine the processing of the entities in the model
[16]–[20]). The perceptual processing time of the entities of the
secondary task is determined by the perceptual cycle time in
the QN-MHP [16]–[20], and the cognitive processing time is
determined by the number of processing cycles of the entities
based on the NGOMSL-style task analysis. In addition, the
physical distances from the steering wheel to the target buttons
on an in-vehicle user interface, as well as the sizes of the buttons
(see the description of the experimental task), were also input
to the model, so that the implemented Fitts’ law in the model
was able to simulate the motor execution time of in-vehicle
messages. The aging effect is modeled by setting the parameter
A in (1)–(3) according to Proctor et al. [38].
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TABLE III
NGOMSL-STYLE TASK DESCRIPTION OF THE SECONDARY TASK

Fig. 4 shows a snapshot of the simulation model developed
in the Promodel simulation environment when it was simulating
the multitask situation in driving. The total length of road driven
by the model was 5 km in each run (the model performed six
replications with different sets of random numbers).

B. Simulation Result

1) Younger Driver Group: Figs. 5 and 6 show the simu-
lation results of the overall workload and the delta overall
workload (∆Workload=Workloaddelay i−Workloaddelay i−1,
delay1 =3; delay2 = 5, delay3 = 10, delay4 = 15, delay5 =
20, and delay6 = 30),3 which represent the change of subjective
workload when the delay time increases.

The SD of the simulated lane positions and its delta values
are shown in Figs. 7 and 8. In addition, the simulated average
RT of the secondary task is presented in Fig. 9.
2) Older Group: Simulation results of the workload

(Figs. 10 and 11), the SD of the lane positions (Figs. 12 and
13), and the average RT of the secondary task of the older driver
group (Fig. 14) were obtained and plotted.

VI. ALGORITHMS IN DETERMINING OPTIMAL

DELAY TIMES IN THE MC

After the simulated workload and driver performance are
obtained using the QN-MHP, the function of the MC in the

3The setting of the delay time is based on the following logic: If the interval
between different delay times is too large, it may not sensitively reflect the
change of workload across different delay times. However, if the delay time
is too small (e.g., 1 or 2 s), the change in the driver workload will become
too small, which will create a problem in experimental validation: Given a
limited number of levels in independent variables in one experiment (if we have
20 levels of the delay time, the experiment will have to test all 80 (20 × 2 ×
2 = 80) conditions, which makes the experiment very time-consuming (e.g.,
80∗5 min = 6.7 h).

Fig. 4. Multiple-task driving simulation.

Fig. 5. Simulated overall workload using the QN-MHP (younger driver
group).

Fig. 6. Simulated delta overall workload (Workloaddelay i −
Workloaddelay i−1) (younger driver group).

QN-MHP AWMS is to determine the optimal delay times
between the messages from the in-vehicle systems using certain
algorithms. Once optimal delay times are known, the MC reg-
ulates the rate of these messages according to different driving
situations.
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Fig. 7. Simulated SD of the lane positions using the QN-MHP (younger driver
group).

Fig. 8. Simulated delta SD of the lane positions (SDdelay i − SDdelay i−1)
(younger driver group).

Fig. 9. Simulated average RT of the secondary task (younger driver group).

Fig. 10. Simulated overall workload using the QN-MHP (older driver group).

Fig. 11. Simulated delta overall workload (Workloaddelay i −
Workloaddelay i−1) (older driver group).

Fig. 12. Simulated SD of the lane positions using the QN-MHP (older driver
group).

Fig. 13. Simulated delta SD of the lane positions (SDdelay i − SDdelay i−1)
(older driver group).

The optimal delay time ODelay at the workload dimen-
sion (ODelayWL), the SD of the lane position SDLP di-
mension (ODelay1SDLP), and the RT of the secondary task
(ODelayST ) dimension can be obtained using the following
algorithms (see Table IV), where ODelay is quantified as
the upper bound of a minimal increase (i = 1, 2, 3, . . . ; j =
1, 2, 3, . . . ; k = 1, 2, 3, . . .) of the message delay time that re-
duces the mental workload WL, SDLP, or the average RT of the
secondary task by less than one major unit. In the default setting
of the system, MWL is equal to 10, which is a major unit in
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Fig. 14. Simulated average RT of the secondary task (older driver group).

TABLE IV
ALGORITHMS IN THE MC TO DETERMINE THE OPTIMAL DELAY TIME IN

THE WORKLOAD, THE SDS OF THE LANE POSITION (SDLP) DIMENSION

(ODelaySDLP), AND THE REACTION TIME OF THE SECONDARY

TASK (ODelayST) DIMENSION

the workload scale (e.g., 10 in the 0–100 workload rating); the
major unit in the SDs of the lane position MSD is set at 0.1 [39];
and the major unit in the average RT of the secondary task MST

is set at 1 s (the designer of the adaptive system can change
the values of MWL, MSD, and MST , depending on different
situations, e.g., different road widths and the RT requirement of
the secondary task).

The final optimal delay ODelay in a particular speed and
curve condition, considering the three dimensions, can be ob-
tained by

ODelay = Max{WWLODelayWL,WSDLPODelaySDLP

WST ODelayST } (4)

which takes the maximum values of ODelayWL,
ODelaySDLP, and ODelayST with their weights WWL,
WSDLP, and WST , respectively (whose default values are
equal to 1 but can be set to 0 or 1, according to the different
emphases on workload, driving performance, or secondary task
performance).

Accordingly, based on the preceding algorithm and the cur-
rent simulation results of the workload (Figs. 5 and 6), the
optimal delay times in the workload dimension are obtained
for younger drivers (25–35 years old) under the following four
driving conditions: 1) 65-mi/h curve: Delay ≥ 15 s; 2) 65-mi/h
straight: Delay ≥ 10 s; 3) 45-mi/h curve: Delay ≥ 10 s; and
4) 45-mi/h straight: Delay ≥ 5 s For example, in the 65-mi/h-
curve condition, when the Delay increases from 10 to 15 s

(the upper bound is 15 s), ∆WL is less than 10; therefore,
the value of ODelayWL in that driving condition is 15 s.
Similarly, the optimal delay times in the SDLP dimension
are obtained for younger drivers (25–35 years old) under the
following four driving conditions (see Figs. 7 and 8): 1) 65-mi/h
curve: Delay ≥ 10 s; 2) 65-mi/h straight: Delay ≥ 5 s;
3) 45-mi/h curve: Delay ≥ 3 s; and 4) 45-mi/h straight:
Delay ≥ 3 s. The optimal delay times in the average RT of
the secondary task under the four driving conditions are given
as follows: 1) 65-mi/h curve: Delay ≥ 5 s; 2) 65-mi/h straight:
Delay ≥ 5 s; 3) 45-mi/h curve: Delay ≥ 3 s; and 4) 45-mi/h
straight: Delay ≥ 3 s (see Fig. 9).

Based on (4), the following equations are derived:

ODelay(65, Curve) = Max{1 × 15, 1 × 10, 1 × 5}
=15 (5)

ODelay(65, Straight) = Max{1 × 10, 1 × 5, 1 × 5}
= 10 (6)

ODelay(45, Curve) = Max{1 × 10, 1 × 3, 1 × 3}
= 10 (7)

ODelay(45, Straight) = Max{1 × 5, 1 × 3, 1 × 3}
= 5. (8)

Thus, we can derive the following suggestions about the
optimal delays for the four driving conditions when a younger
driver is performing the secondary task: 1) 65-mi/h curve:
Delay ≥ 15 s; 2) 65-mi/h straight: Delay ≥ 10 s; 3) 45-mi/h
curve: Delay ≥ 10 s; and 4) 45-mi/h straight: Delay ≥ 5 s.
In other words, in the AWMS, the rates of messages presented
to a driver may follow the final suggestion list given to reduce
drivers’ overall workload and improve the driving performance
and the performance of the secondary task. The same simu-
lation model can be used to model the driver workload and
performance when the properties of the secondary task or the
driving conditions change. The algorithms in Table IV and (4)
that determine the optimal delay times were implemented using
a Microsoft Visual Basic for Applications program.

For older drivers (60–75 years old), based on Figs. 10 and
11 and the aforementioned algorithms, the following optimal
delay times in the workload dimension are obtained under the
following four driving conditions: 1) 65-mi/h curve: Delay ≥
15 s; 2) 65-mi/h straight: Delay ≥ 10 s; 3) 45-mi/h curve:
Delay ≥ 15 s; and 4) 45-mi/h straight: Delay ≥ 10 s. Simi-
larly, the optimal delay times in the SDLP dimension are given
as follows: 1) 65-mi/h curve: Delay ≥ 5 s; 2) 65-mi/h straight:
Delay ≥ 5 s; 3) 45-mi/h curve: Delay ≥ 5 s; and 4) 45-mi/h
straight: Delay ≥ 3 s (see Figs. 12 and 13). The optimal delay
of messages in the secondary task for older drivers might be
at least greater than 5 s for the 45-mi/h (curve condition) and
65-mi/h conditions, including the straight and curve conditions
(3 s for the 45-mi/hr straight condition) (Fig. 14). Using (4), we
can derive the following suggestions for the optimal delays for
the four driving conditions when an older driver is performing
the secondary task: 1) 65-mi/h curve: Delay ≥ 15 s; 2) 65-mi/h
straight: Delay ≥ 10 s; 3) 45-mi/h curve: Delay ≥ 10 s; and
4) 45-mi/h straight: Delay ≥ 5 s.
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VII. EXPERIMENTAL EXPLORATION OF THE

PROTOTYPE OF THE QN-MHP AWMS

A. Experimental Design

A 2 × 2 two-factor mixed subject design was used in this
experiment to test the effectiveness of the prototype of the
adaptive system. The independent variables were given as fol-
lows: 1) the within-subject variable of the two conditions of the
system (random versus adaptive) (in the adaptive condition, the
delay time was adapted to the different driving conditions and
drivers’ ages based on the optimal delay times calculated from
the algorithms in the MC and the simulation results of the QN-
MHP) and 2) the between-subject variable of the age of drivers,
i.e., younger (25–35 years old) versus older (60–75 years old).
The dependent variables were the driver workload, which is
measured by NASA-TLX; the driving performance, which is
measured by the SD of the lane position; and the performance
of the secondary task, which is measured by its task completion
time (or RT) and error rate. Each participant experienced two
conditions of the system (adaptive and random), combined
with four levels of driving conditions (straight or curve, cross
multiplied with a speed of 45 or 65 mi/h). Participants were
randomly assigned to one of two groups: The members of
each group performed the experimental task either, first in
the adaptive condition and, then, in the random condition or
vice versa. Within each of these groups, the order of the four
levels of driving conditions was also randomized, and each of
these driving conditions appeared once for each participant.

B. Participants

Sixteen licensed drivers were paid to participate in this
experiment, including a group of eight younger subjects (aged
25–35 years, mean = 30, SD = 2.9) and a group of eight
older subjects (aged 60–75 years, mean = 65, SD = 3.8). All
participants were right handed and had corrected far visual
acuity of 20/40 or better and midrange (80 cm) visual acuity
of 20/70 or better. Prescreening of all participants ensured that
they had good driving records and were physically healthy.

C. Equipment and Test Materials

1) Driving Simulator: The simulator consisted of a full-size
cab, computers, video projectors, cameras, audio equipment,
and other items (Fig. 15). The simulator has a forward field of
view of 120◦ (three channels) and a rear field of view of 40◦

(one channel). The forward screen was approximately 16–17 ft
(4.9–5.2 m) from the driver’s eyes. The vehicle mockup
consisted of the A-to-B pillar section of a 1985 Chrysler
Laser with a custom-made hood and back end. Mounted in the
mockup was a torque motor connected to the steering wheel (to
provide steering feedback), a liquid-crystal display projector
under the hood (to show the speedometer/tachometer cluster),
a subbass sound system (to provide vertical vibration), and a
five-speaker surround system (to provide simulated background
road noise). The five-speaker sound system was obtained from a
2002 Nissan Altima and was installed in the A pillars, the lower
door panel, and behind each of the two front seats. A stock
amplifier (from the 2002 Nissan Altima) drove the speakers.

Fig. 15. UMTRI driving simulator.

Fig. 16. Driver’s view of the road and the touch screen.

The main simulator hardware and software was a DriveSafety
Vection simulator running version 1.6.2 of the software [40].
2) Simulated Roads: The simulated roads had two levels of

road curvature (straight sections and curves of 250-m radius),
which were consistent with the input to the QN-MHP. Both
lanes of the two-lane road were 3.66 m (12 ft) wide. Speed-limit
signs (45 and 65 mi/h) were placed in each section (straight and
curved). The length of each road section was 5 km (half of the
road is straight, and the other half is curved), which is consistent
with the input to the QN-MHP.
3) Touch Screen: An IBM laptop X60 with a 12-in touch

screen was located at the center console of the vehicle, 23◦ ± 3◦

below the horizontal line of sight and 30◦ ± 3◦ to the right of
center (the distance from the center of the right-hand rest area
on the steering wheel to the center of the touch screen was
30 cm). The average width of the buttons on the screen was
4 cm, and the height of the digits on the display was 11 mm (see
Fig. 16; the layout of the touch screen was set based on the ex-
isting radar and message response systems in police vehicles).

D. Experimental Task and Procedure

1) Driving task: Participants were instructed to drive in
the right lane and maintain a speed consistent with the
speed-limit signs on the simulated roads. For them to maintain
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driving speed, each participant heard a computer-generated
voice saying “too fast” or “too slow” if he/she drove 5 mi/h
above or below the speed shown on the speed-limit signs,
respectively.4

2) Secondary Task: The secondary task was composed of
two subtasks simulating a typical multitasking scenario when a
police officer was patrolling a road, as described earlier in this
paper in the example of multitasking in driving.

The first subtask was a radio-message response task:
Participants were instructed to press the button marked “H” on
the touch screen (see Fig. 16) as quickly as possible and then
loudly say “en route” once they hear the word “headquarters”
from the speakers. If they heard “maintenance,” they did not
need to respond.

The second subtask was a speeding judgment task.
Participants were asked to judge whether other vehicles were
speeding, based on the two numbers displayed by a radar
system (the number on the left is the detected speed, and the
number on the right is the distance from the participant’s car
to the other car) (see Fig. 16). In making the judgments, the
participants had to follow three rules: 1) If the speed was above
65 mi/h (including 65 mi/h), it was speeding. 2) If the speed
was at or below 55 mi/h, it was not speeding. 3) If the speed
was between 56 and 64 mi/h (including 56 mi/h and 64 mi/h),
it was speeding if the distance was less than 100 yd (91.4 m),
and it was not speeding if the distance was more than 100 yd.

If participants judged that the other car was speeding based
on the numbers on the screen, they were instructed to press the
“SPEEDING” button on the touch screen as quickly as possible.
Just before the numbers of the second subtask were shown on
the screen, a short (50 ms) high-pitched tone was presented to
the subjects as a cue for the visual stimuli. All of the buttons
on the touch screen produced an auditory feedback (a 100-ms
beep) when pressed.

During the experiment, the stimuli of the two subtasks in the
secondary task were serially presented to a participant (e.g., a
radio message, followed by the numbers of the radar system
or another radio message). The duration between stimuli was
called the delay time, which is manipulated in the adaptive
and random conditions [in the adaptive condition, the inter-
vals between messages are controlled by the adaptive system
according to the calculated optimal delay time, as described
in Section VI (the average interval is 14 s)]. In the random
condition, the intervals are controlled by the rand() function
in a Visual Basic Application in Excel program (the average
interval is the same as that in the adaptive condition). Each
subtask in the secondary task appeared with equal probability
throughout the experiment.

After filling in the pretest forms and taking vision tests, the
participants first practiced the single-task situations of driving
(straight and curves), without a secondary task, and performing
the secondary task while the simulator was in the parked
condition. Then, the participants practiced dual-task situations
of driving while performing a secondary task at the same time.
During the actual test, the participants were instructed to drive

4In the experiment, each subject only received one or two of these messages
to maintain their current speed.

Fig. 17. Comparison of the overall workload between the random and adap-
tive conditions (the error bar shows 1 ± SD of the overall workload rating).

with System A (random condition) or System B (adaptive con-
dition), with the order varying based on the group in which they
were assigned. After the participants finished all of the driving
conditions (two speeds and two curvatures) in the random or
the adaptive condition, they were asked to complete the NASA-
TLX form to report their subjective workload.

E. Experimental Result

1) Subjective Workload: Fig. 17 shows the comparison of
the overall workload ratings measured in the NASA-TLX index
between the random and adaptive conditions. A mixed-factor
(between and within-subject) analysis of variance showed that
the main effect of the system (random versus adaptive) on the
overall workload was significant (F (1, 14) = 30.61, p < 0.01).
In addition, the main effect of age on the overall workload was
significant (F (1,14)=21.09, p<0.01), but the age–system in-
teraction was not significant (F (1,14)=0.35). Within each age
group, there was a significant difference in the overall workload
between the random and adaptive conditions (young group:
F (1,7)=26.57, p<.01; older group: F (1,7)=4.67, p<.05).

The comparison of the workload ratings in the six subscales
between the random and adaptive conditions is presented in
Fig. 18. The main effect of the system was significant for
the workload ratings on each of the six subscale/dimensions
of NASA-TLX (MD (mental demand): F (1, 14) = 18.01,
p < 0.01; PH: F (1, 14) = 6.95, p < 0.05; TD (tempo-
ral demand): F (1, 14) = 30.21, p < .01; PE (performance):
F (1, 14) = 8.73, p < 0.01; EF (effort): F (1, 14) = 30.97, p <
0.01; and FR (frustration): F (1, 14) = 28.30, p < 0.01). In
addition, the main effect of age was also significant for each
of these dimensions (MD: F (1, 14) = 15.28, p < 0.01; PH:
F (1, 14) = 12.07, p < 0.01; TD: F (1, 14) = 11.09, p < 0.01;
PE: F (1, 14) = 17.52, p < 0.01; EF: F (1, 14) = 27.26, p <
0.01; FR: F (1, 14) = 43.97, p < .01). The age–system inter-
action was not significant (MD: F (1, 14) = 0.96, p > 0.05;
PH: F (1, 14) = 0.01, p > 0.05; TD: F (1, 14) = 0.70, p >
0.05; PE: F (1, 14) = 0.15, p > 0.05; EF: F (1, 14) = 0.96,
p > 0.05; and FR: F (1, 14) = 0.003, p > 0.05). In the young
group, multivariate analysis of variance (MANOVA) found
that there is a significant difference in the workload rat-
ing between the random and adaptive conditions on the TD
(F (1, 7) = 24.93, p < 0.01), PE (F (1, 7) = 6.36, p < 0.05),
EF (F (1, 7) = 5.79, p < 0.05), and FR (F (1, 7) = 21.81, p <
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Fig. 18. Comparison of the six workload ratings in NASA-TLX between the random and adaptive conditions (the error bars show 1 ± SD of the workload
rating).

Fig. 19. Comparison of the SD of the lane position between the random and
adaptive conditions (the error bars show 1 ± SD of the SD of the lane positions).

0.01) subscales. In the older group, MANOVA found that there
is a significant difference in the workload rating between the
random and adaptive conditions on the EF subscale (F (1, 7) =
7.50, p < 0.05).

In other words, the adaptive system significantly reduced the
subjective workload in both the younger and older age groups,
as reflected in both the overall workload and the six subscales
of the NASA-TLX.
2) Performance in Driving and Secondary Task: In terms of

driving performance, the main effect of the system on the SD
of the lane positions was also significant (mixed-factor analysis
of variance, F (1, 14) = 33.37, p < 0.01). The main effect of
age was not significant (F (1, 14) = 0.012). The system–age
interaction was significant (F (1, 14) = 7.3, p < 0.05). The
adaptive condition significantly reduced the SD of the lane
positions for both the young (F (1, 7) = 20.50, p < 0.01) and
older driver groups (F (1, 7) = 5.91, p < 0.05) (see Fig. 19).

Fig. 20 shows the comparison of the average RT of the
secondary task between the random and adaptive conditions
(the error rate of the secondary task is less than 1% in both con-
ditions; mixed-factor analysis of variance F (1, 14) = 10.29,
p < .05). The main effect of age was significant (F (1, 14) =
7.54, p < 0.05). The system–age interaction was significant
(F (1, 14) = 5.01, p < 0.05). The prototype of the adaptive
system significantly reduced the average RT of the secondary
task in the older group but not in the younger driver group (older
driver group: F (1, 7) = 24.12, p < 0.01; younger driver group:
F (1, 7) = 0.54).

Fig. 20. Comparison of the mean RT of the secondary tasks between the
random and adaptive conditions (the error bars show 1 ± SD of the mean RT
of the second task).

VIII. DISCUSSION

To reduce driver workload in multitasking, a prototype of a
new AWMS (QN-MHP AWMS) was developed in this paper.
The QN-MHP AWMS was composed of two components: a
QN-MHP-based driver model estimating driver workload in
different driving situations and an MC to change the rate of
messages from the in-vehicle systems. Given the information
of a secondary task (e.g., the processing time at the perceptual,
cognitive, and motor stages), the QN-MHP AWMS adaptively
changes the rate of messages based on the driving conditions
(e.g., the current driving speed and the road curvatures) and the
characteristics of the driver (e.g., age). The experimental study
validated the potential effectiveness of the system in reducing
the workload measured by NASA-TLX in terms of overall
workload, as well as the workload rating at the temporal de-
mand, performance, effort, frustration, and effort subscales. The
driving performance was also improved by using this AWMS.

There are two possible applications for the proposed system:
First, to reduce driver workload, design engineers of in-vehicle
systems can use the QN-MHP AWMS to modify their design
at the early stage of development of various in-vehicle systems.
The QN-MHP AWMS lets the user estimate the driver work-
load when drivers are manipulating different user interfaces of
in-vehicle systems. Engineers can estimate the level of driver
workload and performance based on road situations (e.g., cur-
vature), drivers’ age, message properties from the in-vehicle
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systems change in terms of modalities (the processing time at
the perceptual part), message difficulty (the processing time
at the cognitive part), and motor execution time. Engineers
can also set the absolute (workload “redline”) and differential
thresholds of the simulated workload (e.g., MWL) to determine
the optimal design of the messages and whether the proposed
design can produce a workload that is higher than the “redline.”

Second, the QN-MHP AWMS might be implemented into
vehicles with the development of computer technologies. Even
though the current QN-MHP AWMS needs a simulation soft-
ware installed on a computer, the simulation results of the
QN-MHP and the suggested optimal message rates can be
approximated by relatively simple algorithms; these algorithms
can be implemented into microcomputers in vehicles, particu-
larly vehicles with special duties (police vehicles, ambulance
vehicles, etc.). The MC in the experiment in this paper can also
easily be replaced by the software in the in-vehicle microcom-
puters, because it only needs to read information for the vehicle
speed and the angles of the steering wheel from the bus line (a
parallel circuit that connects the major components and sensors
in a vehicle). Global Positioning Systems can also be used to
measure road curvatures and speed on the next road section so
that the QN-MHP AWMS can estimate the driver workload a
few seconds in advance.

There are several limitations of this paper that need to be
examined in future research. First, because the focus of the QN-
MHP AWMS is to reduce driver workload, it is only suitable for
nonurgent messages of in-vehicle systems (when delaying mes-
sages for a few seconds is allowable, e.g., messages from e-mail
systems and messages related to traffic congestion). For urgent
messages that require immediate driver response, e.g., forward
collision warning messages, no extra delays are allowed. In
fact, this limitation applies to many adaptive workload systems,
because the extra delay or suppression of messages may delay
drivers’ responses to all of these nonurgent messages (however,
it is possible to add an option in the QN-MHP AWMS so that
users can disable the message delay function). Second, the
current adaptive system developed in this paper only focuses
on the rate of two types of messages with equal priority. New
algorithms are needed to manage messages with different
priorities, including the order and length of these messages, but
the QN-MHP AWMS may still serve as a platform for designing
and optimizing the other properties of the information presented
to drivers. Third, this paper only tested the adaptive part of
the QN-MHP AWMS under four driving conditions (current
speed × road curvature) and one characteristic of drivers (age).
Future modeling and experimental studies are expected to add
more driving conditions (e.g., traffic density, intersections,
road curvature in the next few seconds, route planning and
selections, and weather conditions) and driver characteristics
(e.g., driving experience) into the simulation and empirical
validations of the system. Previous published work of the
QN-MHP has considered aging [the variable A (aging factor)
in (1)–(3)] as one of the major factors in predicting driver
workload, and this has already built a foundation for testing
the adaptive system incorporating three sources of information
(driving conditions, information from the in-vehicle systems,
and driver characteristics) at the same time.

In summary, we are extending the current approach in both
modeling different driving tasks and applying the model to
design intelligent in-vehicle systems to improve transportation
safety. Our comprehensive computational model of the driver
workload not only offers theoretical insights into driver
workload but is also a step toward developing a proactive
ergonomic design and multipurpose analysis tools for tasks in
transportation.
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