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Abstract 7 
Vehicle-to-Vehicle (V2V) communication has become one of the most active fields of research 8 
recently. The implementation of the wireless connected vehicles has widely extended the 9 
transmission range of warning messages to inform drivers of hazards ahead. The present study 10 

addressed the human component with mathematical modeling of the human reaction time to 11 
warning messages in the connected vehicle systems with different confidence intervals. With the 12 

modeling of human performance in responses to warning messages, warning message 13 

notification models were then proposed to optimize the settings of connected vehicle systems 14 
parameters including maximum available message notification delay, the maximum available 15 
machine processing time, the minimum acceptable message notification range and the designed 16 

message display delay. The optimal designs of connected vehicle systems parameters were 17 
presented in general and for specific conditions by applying the modeling of human performance 18 
with different confidence intervals (i.e. 95% and 99% C.I.) and the warning message notification 19 

model with human in the loop.  20 
Keywords: connected vehicle system, human-machine interaction, driving performance 21 
 22 

1. Introduction 23 

    Deaths and injuries resulting from road traffic accidents has become a major public health 24 
problem. According to statistic data published by the National Highway Traffic Safety 25 

Administration (NHTSA) in U.S., 5.3 million crashes occurred nationally in 2011, resulting in 26 
29,757 lives lost and approximately one and a half million injuries (U.S. Department of 27 
Transportation, 2013). In order to improve driving safety, recent advances in Intelligent 28 

Transportation Systems (ITS) aim to establish a connected transportation environment enabling 29 
real-time information communication among vehicles and infrastructures (Dimitrakopoulos & 30 
Demestichas, 2010; Papadimitratos, de La Fortelle, Evenssen, Brignolo, & Cosenza, 2009). 31 

Compared to the traditional transportation environment, this connectivity of the ITS allows 32 
drivers to learn about the traffic status out of their sight, and provides them with more time to 33 
respond to warnings to avoid potential hazards.  34 

Considerable research efforts have been devoted towards the design of the connected vehicle 35 

systems. With advances in technologies such as GPS receivers, internal gyroscopes, acceleration 36 
sensors, ranging sensors, systems and applications have been developed to inform drivers of 37 
traffic conditions and hazards ahead of them on the road (Ye, Adams, & Roy, 2008; Jerbi, 38 
Marlier, & Senouci, 2007; Xu, Mak, Ko, & Sengupta, 2004; Fujii, et al, 2011; Santa, Gómez-39 
Skarmeta, & Sánchez-Artigas, 2008). Nolte et al. discussed and compared all possible 40 
technologies for wireless communication, including Bluetooth, ZigBee, Ultra Wide Band (UWB), 41 
and Wi-Fi (Nolte, Hansson, & Bello, 2005). The development of hazard detection systems along 42 
with the connected vehicle technology makes it possible to notify drivers of potential hazards 43 
with a longer time lead time in order to reduce or eliminate collision rates (White, Thompson, 44 
Turner, Dougherty, & Schmidt, 2011; Tewolde, 2012).  45 
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An example application scenario under this scheme is shown in Figure 1. The hazard is 1 
detected by nearby vehicles (Source vehicle) with sensors installed. The source vehicle will 2 
broadcast warnings about the hazards such as a collision to subject vehicles within its 3 
transmission range via dedicated short-range communication networks. The subject vehicle has 4 

to make a fully stop to avoid the hazard. The on-board automotive PC and sensors on the subject 5 
vehicle is responsible for receiving, processing and presenting warnings to drivers. The hazard 6 
detection time is dependent on the type of sensors being installed to include induction coil or 7 
video camera. The warning delivery delay can be influenced by warning composition time, 8 
warning transmission rate, and technique limitation of the network all of which depends on the 9 

network load. The warning encoding and decoding time can usually be negligible. To simplify 10 
the warning transmission process, we considered the warning transmission from one vehicle 11 
(Source vehicle) to other vehicles (Subject vehicle i) in the current work. But the algorithm could 12 

be extended to a more complex situation with multiple vehicles involved in the future. 13 
Existing protocols of vehicle-to-vehicle (V2V) systems mainly focused on the probability of 14 

message reception to evaluate the effectiveness of the system (Challa & Cam, 2007; Torrent-15 

moreno, Mittag, Member, Santi, & Hartenstein, 2009). Nevertheless the effectiveness of the V2V 16 
systems could not be achieved without drivers making proper responses in their interaction with 17 
systems even if the communication system is highly reliable in transmitting warning messages. 18 

Empirical studies have been recently performed regarding driver distractions in the interaction 19 
with ITS (Noy, 1997). It is noticed that even though driver assistance systems aim to support the 20 
driving tasks, the cognitive distraction associated with such systems may have negative effects 21 

on driving performance (Chisholm, Caird, & Lockhart, 2008; Horrey & Wickens, 2006). In the 22 
meantime, researchers studied the influence of warnings on driver behaviors and tried to propose 23 

guidelines for design of the in-vehicle human-machine interface to improve human performances 24 
(Lee & Strayer, 2004). For instance, a study about crash warning systems interfaces suggests the 25 

design guidelines regarding the prioritization of the warning messages, the presentation 26 
modalities of the warning messages, the warning timings, and the adaptation between each type 27 
of warning systems to each hazard situation (Campbell, Richard, Brown, & McCallum, 2007). 28 

To the best of our knowledge, although associated human factors topics have received some 29 
attention in the last few years, human performance has not been adequately taken into 30 

consideration when designing V2V communication protocols (Jerbi et al., 2007; Shivaldova & 31 
Maier, 2011). Most of the research focuses on technical issues in connected vehicle systems (e.g., 32 
communication layers, transmission protocols) without considering effects of those system 33 

parameters on human performance (Ros, Ruiz, & Stojmenovic, 2009; Zang, Weiss, Stibor, Chen, 34 
& Cheng, 2007). As human drivers would still be in the loop of ITS systems at least for the 35 
foreseeable future, it is necessary to consider human performance in order to achieve the 36 
effectiveness of the connected vehicle systems. 37 

In the present study, human performance in warning responses is modeled by extending an 38 
existing mathematical model of human performance with the complexity level of tasks. The 39 
modeling of human performance (reaction time) with different levels of uncertainty is then 40 
integrated to propose the warning message notification model in the connected vehicle system 41 
settings. The message notification model is applied to explore the optimal design of parameters 42 

in general with regard to achieve the optimal performance of the connected vehicle system with a 43 
human in the loop. Finally associated design criteria with different confidence levels are present 44 
considering specific conditions in reality with exampled inputs.  45 

 46 
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2. The Mathematic Model of Warning Messages Notification in Connected Vehicle Systems 1 

2.1 Basic Structure 2 

The basic structure of the models is shown in the Figure 2. The example inputs of the traffic 3 
event is the time to collision of subject vehicle calculated by the locations, speeds and 4 
accelerations of the source vehicle and subject vehicles. The inputs of machine features include 5 
the hazard detection ability of the source vehicle, and the machine processing time range of the 6 
subject vehicle. The human reaction time is modeled with queuing network-model human 7 

processor (QN-MHP), a computational model applied to model how warning is processed in the 8 
human brain. The settings of connected vehicle communication parameters are obtained from the 9 
outputs of the model, including the maximum available message notification delay, the 10 
maximum available machine processing time, the minimum acceptable message notification 11 

range, and the designed message display delay. 12 
The optimal design of the protocol of connected vehicle is proposed based on the human-13 

machine total response time. The time range of the human-machine total response time plays an 14 

important role in determining the available lead time range. In terms of the effect of the lead time 15 
on human performance, a triangular distribution of general in-vehicle warning message 16 

usefulness has been proposed (Lee, Bricker, & Hoffman, 2008). The distribution indicated that 17 
the usefulness of a warning message is impaired if the warning is displayed too early or too late. 18 
Early warnings with longer lead time provide drivers with sufficient time to respond 19 

appropriately, and have the potential to reduce variation in braking reaction time, resulting in a 20 
more gradual and stable responses. However, a warning provided too early without visual 21 

feedback may be treated as a false alarm or nuisance alarm, fail to assist the driver and instead 22 
generate an inappropriate braking response. By contrast, late warnings with shorter lead time 23 

have less trust issues and may not likely be ignored or forgotten. However, such warnings leave 24 
drivers only a short time to interpret the hazardous situation and respond appropriately. Late 25 
warnings may even disrupt an ongoing braking process and lead to a higher probability of 26 

collisions. Accordingly, a designed connected vehicle system should be able to present warnings 27 
to drivers within an optimal range to achieve the best human performance.  28 

 29 

2.2 Modeling of Human Reaction Time to Warnings 30 

    2.2.1 Overview of Queuing Network-Model Human Processor (QN-MHP). QN-MHP was 31 
developed by combining the mathematical theories in queuing networks (QN) with the Model 32 
Human Processor (MHP) to represent human information processing based on neuroscience and 33 

psychological findings and predict human performance in multiple tasks (Liu, Feyen, & 34 
Tsimhoni, 2006; Wu & Liu, 2008). It is a computational architecture that integrates three discrete 35 

serial stages of human information processing including perceptual, cognitive, and motor 36 
processing into three continuous subnetworks of servers (see Figure 3). Each subnetwork is 37 

constructed of multiple servers and links among these servers. Each individual server is an 38 
abstraction of a brain area with corresponding functions, and each link between two servers 39 
represent neural pathways among these functional brain areas. The processing of stimuli is 40 
represented in the transformation of entities passing through routes in QN-MHP. As for the 41 
processing of auditory warnings, Servers 5-8 perform auditory perception. Servers A-C and F 42 
perform working memory and decision-making. Finally, Server X performs feedback 43 
information collection; Server Y performs motor program assembling and error detecting; and 44 
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Server Z is for sending information to body parts (e.g., eye, hand, foot), which are modeled by 1 
servers 21-25. Since this architecture was established, QN-MHP has been applied to quantify 2 
various aspects of human cognition and performance, for instance, driver workload (Wu, Liu, & 3 
Quinn-Walsh, 2008), speed control in car following and free flow driving (Bi & Liu, 2009; Zhao 4 

& Wu, 2013), lateral control and lane change (Bi et al., 2012; Bi et al., 2013), and driver 5 
distraction (Bi et al., 2014; Bi et al., 2012; Fuller et al., 2012; Liu et al., 2006).  6 

In the present work, the QN-MHP was used to model human reaction time in warnings 7 
responses with ongoing driving tasks. Figure 3 presented how auditory warnings are processed 8 
and responded by humans. The auditory stimuli was entered into the auditory perceptual 9 

subnetwork with entries on all four servers. The stimuli firstly arrived at Server 5 (common 10 
auditory processing) representing the middle and the inner ear. The parallel auditory pathways 11 
transmitted the auditory information through the neuron pathway from the dorsal and ventral 12 

cochlear nuclei to the inferior colliculus presented by Server 6 (auditory recognition), and from 13 
the ventral cochlear nucleus to the superior olivary complex represented by Server 7 (auditory 14 
location). Then the auditory information would be integrated at Server 8 representing the primary 15 

auditory cortex and the planum temporale (auditory recognition and location integration). The 16 
entities with phonological information were then transmitted to the left-hemisphere posterior 17 
parietal cortex presented by Server B (phonological loop). A route choice was located at Server 18 

B including a shorter route connecting to Server W directly to retrieve motor programs; and a 19 
longer route connecting to Server C (central executive) and Server F (complex cognitive function) 20 

involving a decision making process, and eventually leading to Server W. The shorter route 21 
represented a processing in emergent situations and the longer route involved detailed 22 
information processing with a stage of hazard evaluation. Those motor programs were then 23 

assembled at Server Y and initialized at Server Z (primary motor cortex), sending out the neural 24 
signals to body parts (Servers 21-25).  25 

2.2.2 Modeling of Human Reaction Time to Warnings in Connected Vehicle Systems. 26 
Reaction time is modeled by extending an existing human response to warning model with the 27 

complexity level of tasks (Zhang and Wu, Eq.3, 2014). The reaction time of warning response 28 
can be modeled by summarizing processing time of all servers on the route where a stimulus is 29 
transformed into a response. The task complexity is modeled with number of words in a warning 30 

message (N). Therefore, n processing cycle is added to the processing time at Server 8. The 31 

reaction times to an auditory warning (𝑅𝑇) are modeled in the following equation, respectively.  32 
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where 𝑇𝑘  denotes the processing time of stimulus at Server k. 𝑝𝐼  and 𝑝𝐼𝐼  is probability of 34 
choosing route I (the shorter route) and route II (the longer route), respectively. N is number of 35 

words in the warning message (e.g. signal words, direction, location, and hazard event). The 36 

detailed derivation of equations and parameter settings are included in Zhang and Wu’s work 37 

(Zhang and Wu, 2014). 38 
The confidence interval of warning reaction time of the driver on ith subject vehicle to jth 39 

warning message is then calculated with confidence level α in equation (2) 40 
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where RT is reaction time to an auditory warning. 𝑡𝛼/2 is the t score with confidence level a . 𝑠 is 42 

standard deviation of reaction time. n is the sample size.  43 
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2.3 Definition and Mathematical Models of Warning Message Notification  1 

    The timeline of the proposed model for human-in-the-loop connected vehicle system 2 
regarding the vehicle collision event with warning messages was present in Figure 4.  The model 3 
starts from the time when the hazard occurs (e.g. an accident) (t=0) till the time when the subject 4 
vehicle reaches the hazard location. A complete timeline includes the hazard detection time, 5 

message delivery delay and lead time. The lead time is composed of designed display delay, 6 
machine processing time, driver reaction time to the warning message, and driver braking time. 7 
The components of the warning message notification process shown on Figure 4 were defined as 8 
follows: 9 

 Detection time (𝑡𝑑𝑒𝑡𝑒𝑐𝑡) is the time duration from the time when the hazard event occurs to 10 
the time when the source vehicle detects the hazard.  11 

 Message notification delay (𝑡𝑀𝑁𝐷) is the time duration from the time when the source vehicle 12 

being able to send the warning message to the time when the first corresponding wireless 13 
collision warning messages is received by the subject vehicle (SV).  14 

 Designed display delay (𝑡𝑑𝑖𝑠𝑝𝑙𝑎𝑦 𝑑𝑒𝑙𝑎𝑦) is the time duration that the in-vehicle information 15 

system hold a warning message before alarming the drivers. 16 

 Machine processing time (𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒) is the processing time of a message in the automotive 17 

PC of the in-vehicle information system on the subject vehicle.  18 

 Reaction time ( 𝑡𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 ) is the time duration a driver needed to process the warning 19 

information. 20 

 Braking time (𝑡𝑏𝑟𝑎𝑘𝑖𝑛𝑔) is the time duration a driver needed to brake and stop a vehicle. 21 

 Lead time (𝑡𝑙𝑒𝑎𝑑) is the time to collision when the in-vehicle information system on the 22 
subject vehicle is able to send the warning message to the driver.  23 

 Human-machine total response time (𝑡𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) is defined as the time duration from the 24 

time when the source vehicle is able to send out the warning message to the time when the 25 

subject vehicle arrives at the collision site or avoids the potential hazard.  26 

2.3.1 Total Time and Human-Machine Total Response Time. 𝑡𝑡𝑜𝑡𝑎𝑙(𝑖) is defined as the time 27 
to collision (TTC) of the subject vehicle when hazard occurs, which is a commonly used safety 28 

indicator. The total time is computed according to the following equation based on vehicle 29 
kinematics for ith vehicle.  30 

 31 

    𝑡𝑡𝑜𝑡𝑎𝑙(𝑖) =
√𝑣𝑖(𝑡)2+2𝑎𝑖(𝑡)(𝑋𝑖(𝑡)−0.5×𝐿𝑖)−𝑣𝑖(𝑡)

𝑎𝑖(𝑡)
                                                                             (3) 32 

 33 

where i=0; 𝑣𝑖(0) is the initial velocity of ith vehicle when hazard occurs. 𝑎𝑖(0) is the initial 34 

acceleration of ith vehicle. 𝑋𝑖(0) is its initial location away from the collision location and 𝐿𝑖 is 35 
the length of ith vehicle. 36 

    Human-machine total response time (𝑡𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑖)) is defined as the time duration from 37 

the time when the source vehicle is able to send out the warning message to the time when the ith 38 

subject vehicle arrives at the hazard location.  39 
 40 

     𝑡𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (𝑖) = 𝑡𝑡𝑜𝑡𝑎𝑙 (𝑖) −  𝑡𝑑𝑒𝑡𝑒𝑐𝑡(ℎ)                                                                              (4) 41 
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 1 

where hazard detection time ( 𝑡𝑑𝑒𝑡𝑒𝑐𝑡(ℎ)) is defined as the time duration from hazard occurrence 2 
to the hazard being detected. The shorter the detection time is the higher ability of the hazard 3 

detection the V2V communication system has.  4 

2.3.2 Minimum Safe Headway. Min𝑡𝑠𝑎𝑓𝑒 (𝑖, 𝑗) is the minimum amount of time for the ith 5 

Subjective Vehicle (SV) to make response to jth warning message successfully before colliding 6 
the lead (i-1) th SV or reaching the hazard location (if i=1) (Anderson, 2006). Previous studies 7 

indicated the driver reaction time to the potential collision event can be reduced by the warnings 8 
with an early alarm timing compared to the warnings with a late alarm timing(Abe & 9 
Richardson, 2004). Braking time might vary based on the initial velocity and the maximum 10 
deceleration of the subject vehicle during braking response processes.  11 

 12 

    𝑀𝑖𝑛𝑡𝑠𝑎𝑓𝑒 (𝑖, 𝑗) = 𝑡𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛(𝑖, 𝑗) + 𝑡𝑏𝑟𝑎𝑘𝑖𝑛𝑔(𝑖, 𝑗)                                                                        (5) 13 

          = 𝑡𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛(𝑖, 𝑗) +
𝑣𝑟(𝑖)

2𝑎𝑚𝑎𝑥(𝑖)
 + 𝜀1 (Anderson, 2006) 14 

 15 

where 𝑣𝑟(𝑖) is the initial speed of the ith SV when the warning message broadcasting to the 16 

driver; 𝑎𝑚𝑎𝑥(𝑖) is the maximum braking deceleration, which is mainly dependent on vehicle 17 

parameters. 𝜀1 is a random error that is affected by various factors (e.g. situation urgency level, 18 
driving experience, driver personality). Most existing method to quantify this random error is 19 

based on normal distribution. We still adopted the most common function to represent the 20 

distribution of 𝜀1 due to its simplicity [0, 0.3] (Abe, G., & Richardson, J., 2004). 21 
2.3.3 Minimum Acceptable Lead Time. There is an optimal lead time range for drivers to 22 

respond to warnings with optimal performance, namely, with least collision rates 23 

[𝑀𝑖𝑛 𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑙𝑒𝑎𝑑, 𝑀𝑎𝑥𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑙𝑒𝑎𝑑]. Given all that, the minimum safe headway represents the 24 

minimum acceptable time for drivers to brake and stop safely. Then, Minimum acceptable lead 25 

time (𝑀𝑖𝑛 𝑡𝑙𝑒𝑎𝑑(𝑖, 𝑗)) left for a driver to respond to the warning message is 𝑀𝑖𝑛𝑡𝑠𝑎𝑓𝑒 (𝑖, 𝑗). 26 

Likewise, the 𝑀𝑖𝑛 𝑡𝑙𝑒𝑎𝑑(𝑖, 𝑗) left for drivers to reach the optimal performance in their responses 27 

is 𝑀𝑖𝑛 𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑙𝑒𝑎𝑑.  28 

2.3.4 Designed Display Delay (𝒕𝒅𝒊𝒔𝒑𝒍𝒂𝒚 𝒅𝒆𝒍𝒂𝒚(𝒊, 𝒋)). It is the delay of message j displaying, 29 

which indicated how long the system hold the warning message over before alarming the drivers 30 
so as to achieve the optimal safety benefit of information system. 31 
 32 

    𝑡𝑑𝑖𝑠𝑝𝑙𝑎𝑦 𝑑𝑒𝑙𝑎𝑦(𝑖, 𝑗) ≤ max (0, 𝑡𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑖) − 𝑀𝑎𝑥𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑙𝑒𝑎𝑑 − 𝑀𝑎𝑥𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒)  (6) 

 33 
    To be more specific, larger message notification range (e.g. notification distance 1 in Figure 4) 34 

enlarges the available range to design the display delay, whereas smaller message notification 35 
range (e.g. notification distance 2 and 3 in Figure 4) leaves a smaller range for designing the 36 
delay. In the former case, the on-board information system is able to delay the warning message 37 

broadcasting if the available time for driver response is relatively long (i.e. ≥ 𝑀𝑎𝑥 𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑙𝑒𝑎𝑑). 38 

Therefore the message will hold for a certain amount of time before broadcasting to the drivers 39 
so that the manipulated lead time will drop into the optimal lead time range. In the latter case, the 40 
designed display delay can be shortened or cancelled by the on-board information system, when 41 
the available time for driver response is short.  42 
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2.3.5 Machine Processing Time (𝒕𝒎𝒂𝒄𝒉𝒊𝒏𝒆(𝒊, 𝒋)). It is the required message processing time of  1 
jth message in the automotive PC of the in-vehicle information system of the ith SV. Any 2 
messages to be sent to the driver required a certain time ahead of its present to be processed in 3 

the in-vehicle information system. In the real design of the system, there might be an available 4 

range for choosing 𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒(𝑖, 𝑗), namely, [min 𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒 , max 𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒]. Maximum available 5 

machine processing time is defined as the longest 𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒(𝑖, 𝑗) that an intended SV can tolerate 6 
to process warning messages with enough lead time left for its driver to effectively respond to 7 
the warning messages.  8 
 9 

    𝑀𝑎𝑥 𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒(𝑖, 𝑗) = {
min  𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒 , 𝑀𝑖𝑛 𝑡𝑙𝑒𝑎𝑑(𝑖, 𝑗) < 𝑀𝑖𝑛 𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑙𝑒𝑎𝑑

max 𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                           (7) 10 

 11 

When t𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑖) is shorter than the time length for drivers to make effective response to 12 

the warning messages, min 𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒  is assigned to the machine processing time in order to leave 13 

more time for human responses; whereas max 𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒  is assigned to the machine processing 14 

time when t𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑖) is long enough for drivers to make responses safely. 15 

2.3.6 Message Notification Delay (𝒕𝑴𝑵𝑫(𝒊, 𝒋)). 𝑡𝑀𝑁𝐷(𝑖, 𝑗) is defined as the time duration from  16 

the source vehicle being able to send out the warning messages to the corresponding wireless 17 
collision warning message j is delivered to the ith SV successfully (Biswas, Tatchikou, & Dion, 18 

2006). Maximum available message notification delay (𝑀𝑎𝑥 𝑡𝑀𝑁𝐷(𝑖, 𝑗)) is then defined as the 19 

longest  𝑡𝑀𝑁𝐷(𝑖, 𝑗)  that an intended SV can tolerate to effectively respond to the warning 20 
messages. This parameter can be influenced by the default design of the communication system 21 
and the real time network load during the warning message transmission.  22 

 23 

    𝑀𝑎𝑥 𝑡𝑀𝑁𝐷(𝑖, 𝑗) ≤  𝑡𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (𝑖) − 𝑀𝑎𝑥 𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒(𝑖, 𝑗) − 𝑀𝑖𝑛 𝑡𝑙𝑒𝑎𝑑(𝑖, 𝑗)  (8) 

 24 

Minimum available lead time (𝑀𝑖𝑛 𝑡𝑙𝑒𝑎𝑑(𝑖, 𝑗)) is assigned different value according to the 25 

time left ( 𝑡𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 (𝑖)) for the entire system in the SV to respond to the warnings. Only 26 

when the lead time reaches its minimum value, the connected vehicle system has the potential to 27 
help driver avoid the collision completely. In other words, if the lead time left for the SV to 28 

respond is less than 𝑡min 𝑠𝑎𝑓𝑒 ℎ𝑒𝑎𝑑𝑤𝑎𝑦(𝑖, 𝑗), the SV could not be able to avoid the collision even 29 

the driver make correct response immediately. Nevertheless, when the available lead time is 30 
longer than the minimum optimal lead time and shorter than the maximum optimal lead time, 31 

𝑀𝑖𝑛 𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑙𝑒𝑎𝑑 is assigned to 𝑀𝑖𝑛 𝑡𝑙𝑒𝑎𝑑(𝑖, 𝑗)to calculate message notification delay in order to 32 

achieve the optimal performance in human responses to the warning messages. When the 33 

available lead time is longer than the maximum optimal lead time, 𝑀𝑎𝑥 𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑙𝑒𝑎𝑑 is assigned 34 

to 𝑀𝑖𝑛 𝑡𝑙𝑒𝑎𝑑(𝑖, 𝑗) in the design criteria of message notification delay in order to achieve the 35 
optimal performance in human responses to the warning messages.   36 

2.3.7 Message notification range. In the connected vehicle communication, only vehicles in 37 
message notification range will be able to receive the warning messages from the source vehicle. 38 
Generally speaking, the message notification range serves as an important parameter in such 39 

communication processes since it determines the remaining time for message delivery and 40 
appropriate driver’s response. Minimum acceptable message notification range (Min MNR (i)) 41 
is the range, which allows the closest vehicle to the potential collision site in this range to be able 42 

to avoid the collision safely.  43 
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 1 

    Min 𝑀𝑁𝑅(𝑖) ≥ ∫ (𝑣𝑖(𝑡)𝑡 +
1

2

𝑡𝑟

0
𝑎𝑚𝑎𝑥(𝑡)𝑡2)𝑑𝑡 (9) 

 2 
where tr is the time needed for drivers to achieve optimal performance.  3 

    When 𝑡 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑖) is long enough for drivers to achieve optimal performance, the t will 4 

be the summation of the minimum optimal lead time and machine processing time. Otherwise, 5 
the message notification range should be extended to ensure the driver within the range has a 6 

chance to achieve optimal performances. 7 
 8 

𝑡𝑟 = 𝑀𝑖𝑛 𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑙𝑒𝑎𝑑 + 𝑀𝑎𝑥 𝑡machine(𝑖, 𝑗) + max(0,  𝑀𝑖𝑛 𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑙𝑒𝑎𝑑 + 

         𝑀𝑎𝑥 𝑡machine(𝑖, 𝑗) − 𝑡 𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑖) 
 

(10) 

 9 

2.4 Explore the Optimal Lead Time Range 10 

In order to obtain the optimal lead time range, an experimental study was conducted by our 11 
research group exploring the effect of lead time on driver responses to speech warinings (Wan, 12 
Wu, & Zhang, 2014). The experiment design and results of the experiment is presented in the 13 

appendix and the detail of the experiment can be referred to Wan et al’s study. Table 1 presented 14 
the statistic models of safety benefits of the warning messages (i.e. crash rates and reduced 15 

kinetic energy) as a function of lead time (𝑡𝑙𝑒𝑎𝑑). The optimal lead time range is obtained for 16 
normal drivers in non-distracted, sober conditions with an average age of 21.13 years (SD = 2.54) 17 
and an average lifetime driving experience of 40,054.62 miles (SD = 57,911.04). 18 

To achieve the best estimation, data were separated into different segments based on their 19 
trends. The R2 of the statistic models of collision rate and the reduced kinetic energy are 0.99 and 20 

0.21, respectively. In particular, there is an abrupt decrease of collision rate appearing with the 21 

lead time getting longer when the lead time is shorter than 4.5s; while the rate of such decrease 22 
tended to slow down when the lead time ranging from 4.5s to 10s and a slight pick-up occurred 23 
after the lead time became longer than 10s. In the meantime, a significant increase of reduced 24 

kinetic energy was suggested when the lead time was shorter than 3.5s, while a slow decrease 25 
occurred after the lead time got longer than 3.5s. The results of the curve estimation indicated the 26 

optimal safety benefits of warning messages (i.e. lowest collision rate and highest reduced 27 
kinetic energy) were obtained with the lead time ranging from 4.5s to 10s. 28 

 29 

 30 

3. The Model Application in the Design of Connected Vehicle Systems 31 

3.1 Parameter Setting 32 

The parameter settings of inputs were from the experiment as an example. The maximum 33 

deceleration 𝑎𝑖(𝑡)  was 6.37 𝑚/𝑠2 . The initial velocity 𝑣𝑖(𝑡)  when the warning message is 34 

broadcast to the driver is 19.81 m/s. The 𝑡total  and 𝑡detect  are set to be 15.00s and 5.00s, 35 

respectively. 𝑡machine is ranging from 50.00-200.00ms. 36 
The reaction time was calculated based on equation 3. The reaction time to auditory warning 37 

messages is computed as 2.62s. The standard deviation of reaction time (𝑠) is 0.3 (Abe, G., & 38 
Richardson, J., 2004) for normal drivers. By normal drivers, we mean the drivers were driving in 39 
sober undistracted condition with age ranging from 23 to 61. The 95% confidence interval of 40 
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modeled reaction time is 2.49-2.75, and the 99% confidence interval of modeled reaction time 1 
2.45-2.79. The corresponding minimum safety headway in equation 9 is ranging from 4.34-4.60 2 
with 95% confidence, and from 4.30-4.64 with 99% confidence. 3 

 4 

3.2 The Optimal Design of the Vehicle-To-Vehicle System in General 5 

Table 2 presented the optimal design of V2V systems in general with lead time fall into the 6 

optimal lead time range (4.5𝑠 <  𝑡𝑙𝑒𝑎𝑑 ≤ 10𝑠). Here, 4.5s and 10s are the minimum and the 7 
maximum threshold of the optimal lead time, respectively. A lower collision rate and more 8 
reduced kinetic energy, was achieved with lead time of the warning messages in this range. 9 
Therefore, the optimal design of the information system will be able to broadcast the message 10 

with the lead time ranging from 4.5s to 10s ahead of the vehicle reaching the hazard location. 11 
The total time from the hazard occurrence to the vehicle receiving the warning messages 12 

reaching the hazard site is 15s. Therefore the human-machine total response time equals to the 13 

differential between 𝑡detect (5s) and 𝑡total, which is 10 seconds. In other word, the vehicle-to-14 
vehicle communication system would be able to send out the warning message with 10 seconds 15 

left for the ith vehicle to reach the hazard site in order to achieve the most safety benefits. 16 
In order to achieve the optimal performance of the human-in-the-loop connected vehicle 17 

systems, the human-machine total response time (𝑡𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑖)) should at least be longer 18 

than the summation of maximum message processing time of the subjective 19 

vehicle (max 𝑡machine(𝑖, 𝑗)) and minimum amount of time for drivers to make optimal braking 20 

responses successfully before reaching the hazard location (𝑚𝑖𝑛 𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑙𝑒𝑎𝑑). In this case, the 21 

human-machine total response time fulfill this requirement. The maximum available delivery 22 
delay of the warning messages will be determined by the human-machine total response time 23 

(𝑡𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑖)) , the minimum optimal lead time ( 𝑚𝑖𝑛 𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑙𝑒𝑎𝑑 ) and the maximum 24 

message processing time (max 𝑡machine(𝑖, 𝑗)) . As computed in equation (6), the maximum 25 

available 𝑡𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑑𝑒𝑙𝑎𝑦 should be no longer than 5.3s. 26 

    The maximum available machine processing time can be assigned the maximum machine time 27 

(𝑚𝑎𝑥𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒) since the time left for the driver to respond is still longer than the minimum 28 
human response time in order to avoid the collision completely. Therefore, the maximum 29 

available machine processing time (maximum available 𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒) is no longer than 200ms. 30 
     The minimum acceptable message notification range (Min-MNR) can be calculated with the 31 

(𝑚𝑖𝑛𝑡 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑙𝑒𝑎𝑑 ), which is minimum acceptable lead time (𝑀𝑖𝑛 𝑡𝑙𝑒𝑎𝑑(𝑖, 𝑗)) to achieve the 32 

optimal driving performance. Here, the Min-MNR is the range to achieve the optimal driving 33 
performance. As computed in equation (9), the minimum acceptable message notification range 34 
(Min-MNR) should be at least 329 meters longer. In other word, the message should be 35 

broadcast to drivers to avoid collision when the drivers traveled to 329 meters from the potential 36 
hazard location. 37 
     In addition, there is no designed display delay in this condition since the lead time drops in 38 

the optimal lead time range (𝑡𝑑𝑖𝑠𝑝𝑙𝑎𝑦 𝑑𝑒𝑙𝑎𝑦 = 0). Therefore the message will be sent right away 39 

after the potential hazard being detected to achieve an optimal performance in avoiding the 40 
hazard. 41 
 42 
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3.3 The Design of the Vehicle-To-Vehicle System in Specific Conditions 1 

In reality, the optimal performance of V2V systems in general situation may not be achieved, 2 
for instance, for systems with lower hazard detection ability. Therefore, the following subsection 3 
proposed the design criteria of vehicle-to-vehicle systems considering different levels of hazard 4 
detection ability with different confidence intervals of modeling driver reaction time (see Tables 5 

3 and 4).  6 
With a higher hazard detection ability, the connected vehicle system was able to detect the 7 

hazard soon after the hazard occurred resulting in a longer human-machine response time; while 8 
with a lower hazard detection ability, the connected vehicle system may take longer time to 9 
detect the hazard resulting in a relatively short human-machine response time, and a small 10 
chosen range for the machine processing time and delivery delay. Different levels of hazard 11 

detection abilities were reflected by different time needed to detect hazards. The detection time 12 

was selected as example inputs from 1s to 14s to fit into different specific conditions. 13 

Generally speaking, the optimal design will be suitable for the conditions that the lead time 14 
falls into the optimal lead time range (4.5s to 10s). In addition, Table 3 (95% C.I.) and Table 4 15 
(99% C.I.) also indicated the detailed optimal design of the parameters based on example levels 16 
of the hazard detection ability with minimum acceptable lead time falls into any other ranges. 17 

For each level of the hazard detection time, the Minimum acceptable lead time was chosen 18 
from the available range accordingly. The criteria for choosing the lead time is 1) within the 19 
available range of human-machine response time; 2) the shortest lead time which brought the 20 

optimal performance. In the meantime, other parameters such as maximum available delivery 21 
delay, maximum available machine time, minimum acceptable message notification range and 22 

designed display delay were calculated based on the corresponding equations (5-8) as the way of 23 
the calculation for the general situation. In the design of the delivery delay and the machine 24 

processing time, we may have to compromise the machine processing time in order to leave a 25 
larger range of delivery delay. This criterion is set since delivery delay is a major concern in 26 

designing the connected vehicle system. 27 
As we could see from the above tables, the shorter the detection time is, the more severe the 28 

constraints for the human-machine total response time, and in turn constrained the design of 29 
message notification delay, machine processing time, message notification range and the 30 
designed message display delay. When the detection takes an extremely long time, the drivers 31 

will not be able to avoid the collision at the hazard location even in ideal conditions (i.e. no 32 
delivery delay and machine processing time). In order to achieve the optimal performance of the 33 
entire connected vehicle system and take the system design constraints into consideration, a 34 
proper level of detection time has to be achieved so that the corresponding lead time could drop 35 
into the optimal range, a reasonable design requirement of delivery delay and machine 36 

processing time could be selected, and a shorter message notification range can be established. 37 
Based on the results, designers are able to select an appropriate technology (e.g., Wi-Fi) in order 38 

to meet the requirements of the parameters with required confidence levels. 39 
 40 

3.4 The Validation of the Proposed Design for Vehicle-To-Vehicle System  41 

The simulation was run to validate the design criteria of vehicle-to-vehicle systems for each 42 

condition. The time-to-collision (TTC) at the time point when the subject vehicle reaches the 43 

collision location was utilized as a criterion to assess whether the designed parameters make the 44 

system safe to drivers. In particular, if TTC>0, the results indicated human drivers stopped before 45 
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reaching hazard locations; if TTC=0, the results indicated human drivers stopped when reaching 1 

hazard locations; and if TTC<0, the results indicated human drivers failed to stop when reaching 2 

hazard location.  3 

The simulation was performed for 4500 times in total. Each proposed condition in Tables 3 4 

and 4 was simulated for 300 times to validate the optimal design criteria of the connected vehicle 5 

systems, with the values of the design parameters having equal chance to be less than, equal to, 6 

or higher than the proposed optimal design parameters. The reaction time inputted in the 7 

simulation was following a normal distribution of [2.62, 0.3] with the 95% confidence interval 8 

and the 99% confidence interval. The actual message notification delay was inputted with a 9 

range of [𝑀𝑎𝑥 𝑡𝑀𝑁𝐷 − 1, 𝑀𝑎𝑥 𝑡𝑀𝑁𝐷 − 1] so that we could test the resulted TTC as a function of 10 

the time difference between proposed and actual maximum acceptable message notification 11 

delays. The same logic was utilized to test the other two time parameters, the maximum 12 

acceptable machine processing time and the maximum acceptable message display delay. The 13 

actual machine processing time was inputted with a range of [ 𝑀𝑎𝑥𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒 −14 

0.1 ,  𝑀𝑎𝑥𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒 − 0.1 ]. The actual message display delay was inputted with a range of 15 

[𝑡𝑑𝑖𝑠𝑝𝑙𝑎𝑦 𝑑𝑒𝑙𝑎𝑦 − 1, 𝑡𝑑𝑖𝑠𝑝𝑙𝑎𝑦 𝑑𝑒𝑙𝑎𝑦 − 1]. The time difference for all three parameters is calculated 16 

as: Time difference=Actual value-Proposed maximum acceptable value.  17 

The simulation results were presented in Figures 5-7. The TTC was plotted as a function of the 18 

time difference between the actual value and the value of the proposed threshold. Simulation 19 

results showed the proposed parameters well captured the boundaries of the TTC trends. For all 20 

proposed parameters, the TTC<0 for most of cases when actual parameters exceeded the 21 

proposed maximum acceptable values across all conditions, and the TTC>0 for most of cases 22 

when actual parameters were below the proposed maximum acceptable values across all 23 

conditions. As it shown in Figure 5, the average TTC was 0.57s for 𝐴𝑐𝑡𝑙 𝑡𝑀𝑁𝐷 below 𝑀𝑎𝑥 𝑡𝑀𝑁𝐷, 24 

and the average TTC was -0.44s for 𝐴𝑐𝑡𝑙 𝑡𝑀𝑁𝐷 exceed 𝑀𝑎𝑥 𝑡𝑀𝑁𝐷. The difference of TTC was 25 

significantly different for these two groups (F(1, 1982)=5534.38, p<.001). As it shown in Figure 26 

6, the average TTC was 0.09s for 𝐴𝑐𝑡𝑙 𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒 below 𝑀𝑎𝑥 𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒, and the average TTC was -27 

0.04s for 𝐴𝑐𝑡𝑙 𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒 exceed 𝑀𝑎𝑥 𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒. The difference of TTC was significantly different 28 

for these two groups (F(1, 1197)=761.76, p<.001). As it shown in Figure 7, the average TTC 29 

was 0.49s for 𝐴𝑐𝑡𝑙 𝑡𝑑𝑖𝑠𝑝𝑙𝑎𝑦 𝑑𝑒𝑙𝑎𝑦 below 𝑀𝑎𝑥 𝑡𝑑𝑖𝑠𝑝𝑙𝑎𝑦 𝑑𝑒𝑙𝑎𝑦, and the average TTC was -0.50s for 30 

𝐴𝑐𝑡𝑙 𝑡𝑑𝑖𝑠𝑝𝑙𝑎𝑦 𝑑𝑒𝑙𝑎𝑦 exceed 𝑀𝑎𝑥 𝑡𝑑𝑖𝑠𝑝𝑙𝑎𝑦 𝑑𝑒𝑙𝑎𝑦. The difference of TTC was significantly different 31 

for these two groups (F(1, 798)=183.240, p<.001). 32 

 33 

4. Discussion 34 

    The present study modeled human reaction time and proposed the models of the human-in-35 
the-loop warning message notification in the connected vehicle. The application of the models 36 
were presented in the design of the corresponding intelligent transportation system based on 37 
different levels of the lead time resulting from different hazard detection abilities of systems with 38 
different confidence intervals.      39 
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    Previous connected vehicle protocol designs mainly studied the algorithm of the vehicular 1 
network in the communication. Researchers evaluated the performance of different connected 2 
vehicle systems and protocols including the reliability of the warning transmission processes 3 
(Biswas et al., 2006; Chen, Jiang, & Delgrossi, 2009; Willke, Tientrakool, & Maxemchuk, 2009), 4 

and efficiency of the connected vehicle using different strategies and techniques (Sikdar, 2008). 5 
It is generally assumed that connected vehicle systems would still have the human in the loop. 6 
The warnings would be broadcast to the drivers through the connected vehicle system and the 7 
drivers would respond to the warning messages accordingly at least in the short-to-medium time 8 
frame. As far as we know, human factor issues do not appear to have been explicitly addressed, 9 

particularly in the interaction between humans with connected vehicle systems (Challa & Cam, 10 
2007). Previous studies which considered the human factor issues mainly focused on the human-11 
machine interface design and the user acceptance of the system rather than driver performance in 12 

their interaction with the connected vehicle systems (Farah et al., 2012). Even though driving 13 
behaviors were investigated in previous studies, very few studies have specifically taken the 14 
human component into consideration in the design and development of the connected vehicle 15 

system to achieve the optimal performance of the human-machine system. In that case, drivers in 16 
the vehicles receiving the warnings will not be able to avoid the collision without making proper 17 
responses to the dangerous events even if there is a highly reliable and efficient communication 18 

system to transmit warning messages. Therefore the performance of the whole system would be 19 
impaired without deliberating the human-machine interaction even when the optimal 20 
performance of the connected vehicle system is achieved.    21 

    The current study addressed the human component in the connected vehicle system design by 22 
modeling human performances in their interaction with warnings issued by a connected vehicle 23 

systems. With different levels of the hazard detection ability, the available range of the lead time 24 
would constrained the setting of parameters to optimize the human-in-the-loop connected vehicle 25 

system design. In general, the optimal design would be achieved with the lead time dropping in 26 
the optimal range, in which the warning messages broadcasted by the connected vehicle system 27 
would bring the most safety benefits. In the meantime, design criteria were illustrated in detail 28 

for various systems with different hazard detecting abilities with different confidence intervals 29 
(95% and 99%). The design criteria derived for four parameters could be further applied to a V2I 30 

communication system including the designed message display delay, the maximum available 31 
machine processing time, the maximum available message notification delay, and the minimum 32 
acceptable message notification range. The further software can be designed based on the models 33 

developed for specific conditions. Figure 8 displays the interface of such software as an example. 34 
With the hazard detection time of different connected vehicle systems inputting into the software, 35 
the designers of the warning system will be able to obtain the following parameters, including 36 
maximum available delivery delay, the maximum available machine processing time, the 37 

minimum acceptable message notification range and the designed message display delay. 38 
    Although the study was carefully prepared, there are several limitations in our work. First of 39 
all, the current warning message notification model is built with the distribution of reaction time 40 
of average drivers in non-distracted, sober conditions. Given the complex nature of individual 41 
differences, it is very difficult to model the effects of factors such as driver age, traffic 42 

complexity, and driver attentiveness all together. Although multiple factors have been found to 43 
have impacts on driver reaction time, studies showed disparate results regarding the effects of 44 
age and traffic conditions. The results of the available studies make it very difficult to model 45 
those factors at this moment. In terms of driver age, studies found this factor to be either affect or 46 



13 

not affect driver’s reaction time in literature. In particular, Porter, Irani, & Mondor, (2008) found 1 
young drivers responded to auditory alerts more quickly than older drivers when events were 2 
expected, but no significant difference when events were unexpected. Makishita, H., & 3 
Matsunaga, K. (2008) found young and middle aged drivers responded more quickly to a buzzer 4 

sound than older drivers when there was a distracting in-vehicle task, whereas there was no 5 
significant effect of age on reaction time when driving was the only task. In contrast, Kramer, 6 
Cassavaugh, Horrey, Becic, & Mayhugh, J (2007) found no effect of age on driver reaction time 7 
to collision avoidance warnings in varying traffic and collision configurations both without and 8 
with a distracting in-vehicle task. Dozza (2013) also found driver’s age did not significantly 9 

influence driver reaction times in real driving tasks. Moreover, the results of the effects of traffic 10 
conditions on driver reaction times are equivocal. Dozza (2013) found traffic density did not 11 
affect driver reaction times in real driving task. Edquist, Rudin-Brown, & Lenné (2012) found an 12 

parking vehicle on roadside increased drivers reaction time to critical events compared to no 13 
parking vehicle condition. However no warnings were presented in both studies. Chang, Lin, 14 
Fung, Hwang, & Doong (2008) found that it took longer for a driver to react to the critical event 15 

at an intersection than on a straight roadway segment. However, no statistical significance 16 
regarding the effect of hazard location was reported in their study. Built on the model developed 17 
in the current work, individual differences in driving performance under different traffic 18 

conditions could be considered in the next step of the model development. The standard 19 
deviation to calculate the confidence interval can vary among drivers in practice. The parameter 20 
designs can be further investigated for different types of drivers such as drunk drivers and 21 

distracted drivers.  22 
    In addition, the optimal design of the connected vehicle system was proposed with several 23 

parameters obtained from the setting and results of the human experiment, including the initial 24 
velocity when a driver receives the initial message, the maximum acceleration. In future work, 25 

the study of the optimal design of the connected vehicle system could examine the different 26 
setting of these parameters.  27 
    Finally, we quantified the warning transmission from only one vehicle (Source vehicle) to 28 

other vehicles (Subject vehicle i) in the current work. The collision location could be influenced 29 
by the existence of other vehicles between the source vehicle and the subject vehicle. However, 30 

the current model could still be applied to situations with multiple vehicles between the source 31 
vehicle and subject vehicle since the equation to calculate the total time keeps the same with the 32 
distance away from the collision location as the input in the current model. The prediction of the 33 

collision location could be complex since the behavior and response of drivers on other vehicles 34 
is a chain of events and a dynamic process. A more complete model of drivers to predict driver 35 
responses in critical events is still needed to optimize the design of the connected vehicle 36 
systems. However, the current work is one step towards the quantification of connected vehicle 37 

parameter settings. 38 
 39 
 40 

5. Conclusion 41 

The current study developed the message notification models in connected vehicle settings by 42 

modeling human performance in warning responses. By addressing the human performance, the 43 
message notification model was applied to optimize the connected vehicle systems parameters in 44 
general to achieve optimal performance, which including maximum available message 45 
notification delay, the maximum available machine processing time, the minimum acceptable 46 
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message notification range and the designed message display delay. The optimal design of such 1 
systems considering different hazard detection abilities were also presented with different 2 
confidence intervals (95% and 99%). A software interface with the message notification model 3 
implemented was presented to discuss the practical benefits of the current work in the design of 4 

intelligent transportation systems.  5 
 6 
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Figures 1-8 

 
Figure 1. Illustration of connected vehicle communication with the dissemination of the collision 

avoidance warnings to subject vehicles in the notification range of the source vehicle 

 

 

 

 
Figure 2. The structure of warning message notification model. 
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Figure 3. The general structure of QN-MHP (developed in Wu et al., 2008-2013; and all of the 

published mathematical equations in QN-MHP can be found at: 

http://www.acsu.buffalo.edu/~seanwu/QNMHPMath/MathModelQNMHP_Online.htm) 
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Figure 4. Proposed timeline of potential collision event. 
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Figure 5.  The resulted TTC when subject vehicle stopped when varying the message notification delay. 

 

Figure 6.  The resulted TTC when subject vehicle stopped when varying the machine processing time. 



21 

 

Figure 7.  The resulted TTC when subject vehicle stopped when varying the display delay. 
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Figure 8. The interface of the human-in-the-loop connected vehicle system design. 
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Table 1-4 

Table 1 

The Statistic Model of Warning Message Safety Benefits as a Function of the Lead Time 

Dependent variables Curve estimation functions 

Collision rate {

1.172 − 0.254 × 𝑡𝑙𝑒𝑎𝑑 (𝑡𝑙𝑒𝑎𝑑 ≤ 4.5s)
0.099 − 0.003 × 𝑡𝑙𝑒𝑎𝑑  (4.5s < 𝑡𝑙𝑒𝑎𝑑 ≤ 10s)

0.019 + 0.005 × 𝑡𝑙𝑒𝑎𝑑 (𝑡𝑙𝑒𝑎𝑑 > 10s)
 

Reduced kinetic energy {
163.697 + 63.801 × 𝑡𝑙𝑒𝑎𝑑    (𝑡𝑙𝑒𝑎𝑑 ≤ 3.5s)

398.127 − 0.230 × 𝑡𝑙𝑒𝑎𝑑  (𝑡𝑙𝑒𝑎𝑑 > 3.5𝑠)
 

 

 

 

Table 2 

Parameters of the Optimal Design in General (4.5s<Lead time<10s) 
Input parameters Output parameters Suggested design of the parameters 

𝑡𝑡𝑜𝑡𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 , 

𝑡machine range, 

𝑀𝑖𝑛𝑡𝑠𝑎𝑓𝑒 (𝑖, 𝑗) 

Maximum available 

message notification delay  

(𝑀𝑎𝑥 𝑡𝑀𝑁𝐷(𝑖, 𝑗)) 

The time to successfully deliver the warning message from 

the source vehicle to the vehicles within the message 

notification range should be no longer than 5.3s, which 

includes the transmission time, the waiting time and the 

message retransmission delay. 

𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒  range 

Maximum 

Available machine 

processing time 

(Max 𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒) 

The time to process the warning message in the in-vehicle 

information system should be no longer than maximum 

threshold of the machine processing time (200ms). 

𝑉, 𝑎𝑚𝑎𝑥, 

𝑀𝑖𝑛 𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑙𝑒𝑎𝑑 , 

𝑡machine range, 

Minimum acceptable 

message notification range 

(Min MNR(i)) 

The minimum acceptable message notification range 

should be at least longer than 329m in order to achieve the 

most safety benefits. 

𝑀𝑖𝑛 𝑡𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑙𝑒𝑎𝑑 𝑡𝑑𝑖𝑠𝑝𝑙𝑎𝑦 𝑑𝑒𝑙𝑎𝑦  There is no designed display delay in the optimal design. 
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Table 3 

The Optimal Design of the Connected Vehicle System Parameters Based on Example Inputs by  

Modeling the Normal Driver Reaction Time With 95% Confidence Interval  

 

 

 

 

 

 

 

 

 

  

Example Inputs 

Outputs (Based on example inputs) 

Outputs of parameter 

setting thresholds 

Outputs of the 

human reaction 

time model 

Outputs of the Message Notification Parameters 

Total time 

𝑡𝑡𝑜𝑡𝑎𝑙(𝑖) 

=15s 

 

𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒  

range: 

[50-200ms] 

 

Initial 

velocity 

𝑣𝑖(𝑡)=19.81 

m/s. 

 

Max 

deceleration 

𝑎𝑖(𝑡) =6.37 

𝑚/𝑠2 

𝑡𝑑𝑒𝑡𝑒𝑐𝑡(𝑖) 

(second) 

Available 

range of 

𝑡 𝑡𝑜𝑡𝑎𝑙 
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

(𝑖) 

(second) 

Minimum 

acceptab

le lead 

time 

(𝑀𝑖𝑛 

𝑡𝑙𝑒𝑎𝑑(𝑖, 𝑗))
(second) 

Reaction 

Time 

RT 

 

Minimu

m Safe 

Headw

𝑀𝑖𝑛𝑡𝑠𝑎𝑓𝑒  

(𝑖, 𝑗) 

Maximum 

available 

message 

notification 

delay 

(𝑀𝑎𝑥 𝑡𝑀𝑁𝐷) 

(second) 

Maximum 

Available 

machine 

processing 

time 

(Max𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒) 

(second) 

Minimum 

acceptable 

message 

notificatio

n range 

(MinMNR) 

(meter) 

Designed 

display 

delay 

𝑡𝑑𝑖𝑠𝑝𝑙𝑎𝑦 𝑑𝑒𝑙𝑎𝑦  

(second) 

1 

≥10.2 4.5 

2.49-2.75 

with 95% 

C.I. 

4.34-

4.60 

with 

95% 

C.I. 

9.3 0.2 329 3.8 

2 8.3 0.2 329 2.8 

3 7.3 0.2 329 1.8 

4 6.3 0.2 329 0.8 

5 

[4.7, 

10.2] 
4.5 

5.3 0.2 329 0 

6 4.3 0.2 329 0 

7 3.3 0.2 329 0 

8 2.3 0.2 329 0 

9s 1.3 0.2 329 0 

10 0.3 0.2 329 0 

10.3 
[4.54, 

4.7] 
4.34 0.46 0.05 330 0 

11 

≤ 4.39 4.34 

0 0 437 0 

12 0 0 520 0 

13 0 0 776 0 

14 0 0 1075 0 
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Table 4 

The Optimal Design of the Connected Vehicle System Parameters Based on Example Inputs by  

Modeling the Normal Driver Reaction Time With 99% Confidence Interval  

 

  

Example Inputs 

Outputs (Based on example inputs) 

Outputs of parameter 

setting thresholds 

Outputs of the 

human reaction 

time model 

Outputs of the Message Notification Parameters 

Total time 

𝑡𝑡𝑜𝑡𝑎𝑙(𝑖, 𝑗) 

=15s 

 

𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒  

range: 

[50-200ms] 

 

Initial 

velocity 

𝑣𝑖(𝑡)=19.81 

m/s. 

 

Max 

deceleration 

𝑎𝑖(𝑡) =6.37 

𝑚/𝑠2 

𝑡𝑑𝑒𝑡𝑒𝑐𝑡(𝑖) 

(second) 

Available 

range of 

𝑡 𝑡𝑜𝑡𝑎𝑙 
𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

(𝑖) 

(second) 

Minimum 

acceptab

le lead 

time 

(𝑀𝑖𝑛 

𝑡𝑙𝑒𝑎𝑑(𝑖, 𝑗))
(second) 

Reaction 

Time 

RT 

 

Minimu

m Safe 

Headw

ay

𝑀𝑖𝑛𝑡𝑠𝑎𝑓𝑒  

(𝑖, 𝑗) 

Maximum 

available 

message 

notification  

Delay 

(𝑀𝑎𝑥 𝑡𝑀𝑁𝐷) 

 (second) 

Maximum 

Available 

machine 

processing 

time 

(Max𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒) 

(second) 

Minimum 

acceptable 

message 

notificatio

n range 

(MinMNR) 

(meter) 

Designed 

display 

delay 

𝑡𝑑𝑖𝑠𝑝𝑙𝑎𝑦 𝑑𝑒𝑙𝑎𝑦  

(second) 

1 

≥10.2 4.5 

2.45-2.79 

with 99% 

C.I. 

4.30-

4.64 

with 

99% 

C.I. 

9.3 0.2 329 3.8 

2 8.3 0.2 329 2.8 

3 7.3 0.2 329 1.8 

4 6.3 0.2 329 0.8 

5 

[4.7, 

10.2] 
4.5 

5.3 0.2 329 0 

6 4.3 0.2 329 0 

7 3.3 0.2 329 0 

8 2.3 0.2 329 0 

9s 1.3 0.2 329 0 

10 0.3 0.2 329 0 

10.3 [4.5, 4.7] 4.3 0.11 0.05 337 0 

11 

≤ 4.35 4.3 

0 0 354 0 

12 0 0 551 0 

13 0 0 806 0 

14 0 0 1123 0 
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Appendix: The Experiment Design to Explore the Optimal Lead Time (Wan, Wu, & Zhang, 

2014) 

1. Method 

1.1 Participants 

Thirty-two participants (24 males, 8 females) with an average age of 21.13 years (SD = 

2.54) and an average lifetime driving experience of 40,054.62 miles (SD = 57,911.04) 

participated in the study. All of them were licensed drivers and had normal or corrected-to-

normal vision. None of the drivers had previously participated in any simulator or crash 

avoidance studies.  

 

1.2 Apparatus  

A STISIM® driving simulator (STISIMDRIVE M100K, Systems Technology Inc, 

Hawthorne, CA) was used in the study. It comprises a Logitech Momo® steering wheel with 

force feedback (Logitech Inc, Fremont, CA), a throttle pedal, and a brake pedal. The resting 

position of the throttle pedal is 38.2° (the angle between the pedal surface and the ground) and 

the maximal throttle input is 15.2°. For the brake pedal, the resting position is 60.1° and the 

maximal brake input is 28.6°. The STISIM simulator was installed on a Dell Workstation 

(Precision 490, Dual Core Intel Xeon Processor 5130 2 GHz) with a 256 MB PCIe×16 nVidia 

graphics card, Sound Blaster® X-FiTM system, and Dell A225 Stereo System. Driving scenarios 

were presented on a 27-inch LCD with 1920×1200 pixel resolution. A speaker in front of the 

participant provided auditory information in the form of a digitized human female voice with a 

speech rate of ~150 words/min and loudness level of ~70dB. Another speaker provided driving 

sound effects with a loudness level of ~55dB.  

    The behavioral measures (time elapsed (s), speed (m/s), acceleration (m/s2), and distance to 

the initial location where the scenario starts (m)) were automatically collected from the driving 

simulator and outputted to another identical Dell Workstation. This computer would calculate the 

time to collision (TTC) in real time based on the vehicle’s speed and acceleration at each time 

point. Once the calculated time to collision reached the expected value (lead time), the warning 

would be broadcasted.  

 

1.3 Scenarios Setting 

    The experiment scenario was a simulated two-lane (in each direction) urban environment with 

traffic lights, and road signs (e.g., stop signs) involved. There were running vehicles in each 

direction. Speed limit signs with a constant speed limit of 45mph (20.12m/s) were displayed 200 

feet (60.96m) in front of the driver. Participants were instructed to adjust their speed within the 

range from 40mph (17.88m/s) to 50mph (22.35m/s) as if they were driving a real vehicle on the 

road. No distracting in-vehicle task was involved. Visual cues were controlled in the present 

study. The views of participants were blocked by source vehicles, parked vehicles, approaching 

vehicles and buildings so that participants did not have visual cues of hazard vehicles before the 

auditory warnings. Therefore, the subject only relied on the warning to learn about the upcoming 

collision event. 

    Sixteen different collision scenarios were designed and programmed to represent the common 

forward collision events in real world. All collision events had a hazard vehicle violating traffic 

regulations (e.g. vehicle running a red light or stop sign) or exhibiting unsafe driving behaviors 

(e.g. ahead vehicle stopped suddenly). When there was a potential collision event, an auditory 

warning would sound before the appearance of any visual cues (e.g. the hazard vehicle running 
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stop sign or braking light of ahead vehicles). Each warning message started with a signal word 

“Caution” and followed by a description of the collision scenario. The signal word was used for 

calling driver’s attention to the warning message and the upcoming collision event. The 

description of collision scenario comprised the hazard vehicle’s location and behavior, which 

provided the driver with specific information in order to reduce confusion. To make the warning 

as clear and concise as possible, the content of each warning message was determined by a focus 

group involving five native speakers. 

 

1.4 Experiment Design 

    The current experiment adopted a one-factor experiment design with lead time as independent 

variable and collision rate and reduced kinetic energy as dependent variables. The lead time had 

16 levels (0s, 1s, 1.5s, 2s, 2.5s, 3s, 3.5s, 4s, 4.5s, 5s, 6s, 8s, 10s, 15s, 30s, and 60s). When the 

lead time was 0, the warning sounded at the same time when the collision event happened. Each 

subject would go through all 16 collision events with each event assigned with one of the sixteen 

levels of lead time. The order of the assigned level of lead time and collision events was 

randomized. 

    To address the issue of a learning effect, normal traffic events at 120 intersections and on 121 

road segments (e.g., a stop sign with pedestrians crossing the road, a red light with a crossing 

vehicle at the intersection, a horizontal curve, the emergence and departure of a lead vehicle, a 

parked vehicle in the parking lane, etc.) were designed and randomly assigned between the 

adjacent two collision events. Among the 16 collision scenarios, 8 scenarios randomly appeared 

at intersections and the other 8 collision scenarios randomly appeared at road segments. The 

distance between the adjacent two collision locations were randomly assigned between 1000 feet 

and 10,000 feet as long as such distance can fulfill the warning lead time. In addition, in order to 

prevent drivers from anticipating collision events in association with the emergence of warning 

messages, forty normal auditory messages such as weather forecast and news were presented to 

drivers with similar speech rate and loudness level of warning messages. 

    Upon arrival, all participants were first asked to sign a consent document and then complete 

the self-report questionnaire. After, all participants were briefed on the operation of the simulator 

and completed a Practice Block that allowed them to get familiar with the driving simulator 

control. The scenario in the Practice Block was designed similarly with the one in the Test Block. 

Following the Practice Block, participants completed the Test Block comprising 16 collision 

events under an urban environment. In the formal experiment, all participants were required to be 

observant of the traffic rules and try to keep the speed at 45mph. 

    The following behavioral measurements were automatically collected from the driving 
simulator: time elapsed (s), speed (ft/s), acceleration (ft/s2), and distance (ft). These experimental 

driving data were used to obtain the dependent variables. The first dependent variable was 

collision, which specified whether there was collision between a subject’s vehicle and a hazard 

vehicle. The collision rate was then calculated as the percentage of collisions for each level of 

lead time. The reduced kinetic energy of the subject’s vehicle specified the impact reduction led 

by the warning messages. Because the mass of the vehicle can be different in reality, the reduced 

kinetic energy was calculated by the initial speed, reduced speed after driver responding to 

warnings, and a unit mass of vehicles in the current study. Based on the results of collision rate 

and reduced kinetic energy, the optimal range of lead time will be obtained to achieve best 

human performance in responses to warnings (i.e. lowest collision rate and highest reduced 

kinetic energy).  
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2. Results 

    A multivariate analysis of covariance (MANCOVA) was conducted with the measurements of 

potential safety benefit of the warning messages as dependent variables, and lifetime driving 

experience (driving experience (year) ×annual mileage (mile)) and initial velocity (instantaneous 

velocity when the warning message broadcasted) as covariates to determine if the safety benefit 

could be differentiated by the lead time of warnings. The MANCOVA analysis results indicated 

significant effects of lead time on collision rate (F(15, 225)= 5.38, p<.001) and reduced kinetic 

energy (F(15, 225)=5.72, p<.001) by controlling the initial speed and driving experience. 

Referring to Figure 6, there is an abrupt decrease of collision rate appearing with the lead time 

getting longer when the lead time is shorter than 4.5s; while the rate of such decrease tended to 

slow down when the lead time ranging from 4.5s to 10s and a slight pick-up occurred after the 

lead time getting longer than 10s.  

 
Figure 6. The collision rate at different levels of the lead time (Error bars: +/-1 SE). 

According to Figure 7, a significant increase of reduced kinetic energy was suggested when the 

lead time shorter than 3.5s, while a slow decrease occurred after the lead time getting longer than 

3.5s.  

 
Figure 7. The reduced kinetic energy at different levels of the lead time (Error bars: +/-1 SE). 




