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ABSTRACT
The adversarial attack reveals the vulnerability of deep models by
incurring test domain shift, while delusive attack relieves the pri-
vacy concern about personal data by injecting malicious noise into
the training domain to make data unexploitable. However, beyond
their successful applications, the two attacks can be easily defended
by adversarial training (AT). While AT is not the panacea, it suffers
from poor generalization for robustness. For the limitations of attack
and defense, we argue that to fit data well, DNNs can learn the spu-
rious relations between inputs and outputs, which are consequently
utilized by the attack and defense and degrade their effectiveness,
and DNNs can not easily capture the causal relations like humans
to make robust decisions under attacks. In this paper, to better un-
derstand and improve attack and defense, we first take a bottom-up
perspective to describe the correlations between latent factors and
observed data, then analyze the effect of domain shift on DNNs
induced by attack and finally develop our causal graph, namely
Domain-attack Invariant Causal Model (DICM). Based on DICM,
we propose a coherent causal invariant principle, which guides our
algorithm design to infer the human-like causal relations. We call
our algorithm Domain-attack Invariant Causal Learning (DICE)1
and the experimental results on two attacks and one defense task
verify its effectiveness.

CCS CONCEPTS
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and privacy;

∗Junchi Yan is the correspondence author, who is also with MoE Key Lab of Artifi-
cial Intelligence, Shanghai Jiao Tong University, and Shanghai AI Laboratory. This
work was partly supported by National Key Research and Development Program of
China (2020AAA0107600), Shanghai Municipal Science and Technology Major Project
(2021SHZDZX0102), and NSFC (61972250, 72061127003).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539242

KEYWORDS
Data Privacy, Robustness, Causal Inference, Attack Transferability
ACM Reference Format:
Qibing Ren, Yiting Chen, Yichuan Mo, Qitian Wu, and Junchi Yan. 2022.
DICE: Domain-attack Invariant Causal Learning for Improved Data Pri-
vacy Protection and Adversarial Robustness. In Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining (KDD ’22), Au-
gust 14–18, 2022, Washington, DC, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3534678.3539242

&DW�������� &DW��������ORFDOLW\�DWWDFN��HSVLORQ ���

3L[HO�DWWDFN��HSVLORQ �������

DNNs

Humans
malicious noise

clean example (cock)

malicious example

``𝑓𝑙𝑜𝑤𝑒𝑟′′

``𝑐𝑜𝑐𝑘′′

Figure 1: Vulnerability of DNNs under manual attacks.

1 INTRODUCTION
Existing DNNs often rely on the IID assumption that the training
and test data follow the same distribution. When there exist domain
shifts, the performance of DNNs on the new test domain would
suffer dramatic degradation, which has been demonstrated by the
pervasive existence of adversarial examples generated via injecting
an imperceptible yet malicious noise to test domain [13, 43]. Mean-
while, poisoning train data with manual noise, also named delusive
attack, recently shows its effectiveness on maximizing test error
of DNNs [9–11, 18], and thus by poisoning personal data before
releasing them online, we can protect data privacy against unau-
thorized or even illegal use because training DNNs on the poisoned
data would greatly degrade their performance on clean test data. As
shown in Fig. 1, although the shift away from the original domain
incurred by the above two attacks brings a huge performance gap
of DNNs, it does NOT affect human decisions since perturbations
resulting from these attacks are imperceptible to humans [13, 43].
One popular hypothesis is that the human cognitive system is ca-
pable of capturing causal relations that are invariant to domain
shifts [14], while DNNs tend to fit all types of correlations to fit
1Implementation available at https://github.com/Thinklab-SJTU/DICE.
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data well and there can be spurious ones, i.e., not the cause of labels.
Therefore, it is reasonable to assume that the attacker succeeds
by exploiting such spurious factors, to shift data away from the
natural distribution. However, the vulnerability of DNNs revealed
by attacks can be greatly mitigated by adversarial training (AT) [25],
a defense strategy that minimizes adversarial risk on malicious data,
which shows that such spurious factors disturbed by the attacker
can be easily recovered by the defender. Consequently, the attackers
can improve their power if they can identify and perturb the casual
relation instead of the spurious one. In terms of data privacy, the
stronger delusive attack indicates better protection of personal data.

On the opposite side, AT itself suffers from poor generalization
with relatively low robustness on test domain [36, 37]. Since we
assume that attacks succeed by utilizing spurious factors, we ar-
gue that to defend against attacks, AT tends to fit such spurious
correlation between outputs and latent factors, which is not nec-
essarily invariant across domains. Therefore, when the spurious
association changes, e.g., from training domain to test domain, the
performance of robustness will change accordingly, resulting in
a large generalization gap. Overall, our defense is aimed at better
robustness generalization by focusing on causal factors, instead of
the above spurious correlation. In this spirit, since causal reason-
ing can identify causal relation and remove the spurious bias by
intervention [30], we initiate our study towards understanding and
improving attack and defense using this powerful tool.

However, here comes two main challenges to our goals: (i) How
to construct a causal graph to describe causal relationships between
latent factors and observed variables in the context of attack and
defense. (ii) Based on our causal graph, how to efficiently infer the
unobserved causal relations from observed variables remains to be
solved.

To address the first challenge, alongwith the perspective of latent
data generating, we propose our simple yet principled bottom-up
Structural Causal Model [12, 30]: namely the Domain-attack In-
variant Causal Model (DICM), as illustrated in Fig. 2. In DICM,
following causal assumptions of [24, 41], we split the latent fac-
tors into output-causative factors 𝑆 (e.g., shape or contour of the
object) and others 𝑉 (e.g., the style of the object), both of which
constitute the inputs 𝑋 . We additionally assume that 𝑆 and 𝑉 are
spuriously correlated, which forms a spurious and even harmful
path from 𝑉 to 𝑌 . Different from [24, 41], we introduce an extra
domain variable 𝐷 to explicitly model the effect of domain shifts
induced by the attack. So far, we are capable of re-interpreting how
the attack and defense work using a causal view: (i) change the
mechanism from domain variable to latent factors, e.g., the attacker
crafts malicious examples via 𝑃 (𝑋 |𝑆,𝑉 ) by perturbing 𝑃 (𝑉 |𝐷) with
interventions on 𝐷 ; (ii) manipulate the distribution of domain vari-
able, e.g., some defense seek robust prediction through an ensemble
of cross-domain models [28, 46]; or more unlabeled data [5, 27],
both of which extend single domain to multiple domains and hence
make models fit domain-invariant 𝑆 . Finally, based on the above
assumptions embedded on DICM, we formulate our causal invari-
ance principle over attack-induced domain shift, which guides our
algorithm design for causal inference.

For the second challenge, based on DICM, we propose a causal
inference pipeline, calledDomain-attack InvariantCausal Learning

X
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Figure 2: (a) Our domain-attack invariant causal model
(DICM), (b) The intervened DICM under causal intervention,
(c) Realization of causal intervention by backdoor adjust-
ment.
(DICE), to remove the spurious bias by causal intervention. Specifi-
cally, we propose to use the backdoor adjustment method [31] for
intervention, i.e., blocking the spurious path from 𝑉 to 𝑌 by inter-
vening on𝑉 as Fig. 2 (b) shows. Instead of performing the expensive
“physical" intervention, DICE performs a practical “virtual" one from
only the observation data. Motivated by a line of interpretability
works that adversarial training produces human-perception aligned
gradients [21, 47], we utilize such a prior provided by the robust
model to approximate the confounder 𝑉 . We also propose to im-
prove the diversity and confounding effect of 𝑉 in an adversarial
way and we provide a random-sampled confounder set for an effec-
tive approximation of backdoor adjustment, as shown in Fig. 2 (c).
Finally, DICE learns to infer 𝑆 against 𝑉 through minimizing the
devised causal invariant risk.

Experimentally, we verify the advantages of DICE through three
downstream tasks on real-world dataset CIFAR-10 and CIFAR-
100 [22]: (i) for delusive attack, we propose to facilitate this attack
by attacking the learned domain-invariant factors 𝑆 . Our attack
outperforms the current state-of-the-art methods even under strong
defense; (ii) for adversarial attack, adversarial examples crafted
on the learned 𝑆 exhibit strong transferability across different un-
known target models, even being comparable to white-box attacks;
(iii) for defense, we verify the generality and effectiveness of DICE
by integrating DICE with two popular defense baselines, PGD-
AT [25] and TRADES [59], as two defense variants. Both of variants
can significantly improve adversarial robustness over baselines.

Ourmain contributions are: (i)Methodologically, from a bottom-
up data generating process, we build our causal graph, namely
Domain-attack Invariant Causal Model (DICM), to provide a uni-
fied view of the attack and defense. With our specific and mod-
erate assumptions embedded in DICM, we further derive causal
invariance principle, pointing out the necessity of identifying the
output-causative factors. (ii)Algorithmically, we propose a causal
inference pipeline, namely Domain-attack Invariant Causal Learn-
ing (DICE) to infer domain-invariant features via an effective ap-
proximation of backdoor adjustment. (iii) Experimentally, we
demonstrate our DICE outperforms baselines under two attack and
one defense scenarios, with better transferability of adversarial at-
tack, better data privacy protection by delusive attack and better
robustness by defense.

 

1484



DICE: Domain-attack Invariant Causal Learning for Improved Data Privacy Protection and Adversarial Robustness KDD ’22, August 14–18, 2022, Washington, DC, USA

2 PRELIMINARIES
Consider a classification task with data (𝑥,𝑦) ∈ X × Y from an
observed distribution 𝐷 . 𝐷𝑡𝑟𝑎𝑖𝑛 denotes the training domain with
𝐷𝑡𝑒𝑠𝑡 as the test domain, while �̂� is the manually perturbed domain
based on 𝐷 . We first discuss the vanilla structural casual model,
followed by the basic ideas on attack and defense as well as pri-
vacy and robustness, which serve the preliminaries for our main
approach.

2.1 The Vanilla Structural Causal Model
2.1.1 Structural Causal Model (SCM).. The structural causal model
(SCM) [12, 30] is used to describe the causal relationships. As shown
in Fig. 2, each directed arrow indicates the causal relationship be-
tween two variables, e.g., 𝑆 → 𝑌 denotes that 𝑆 is the cause of 𝑌 .
In a SCM, if a variable is the common cause of two variables, it is
called the confounder, which induces spurious correlation between
them, e.g., 𝑋 ← 𝑉 ↔ 𝑆 → 𝑌 , where 𝑉 is the confounder of 𝑋 and
𝑌 . Furthermore, the above path from 𝑋 to 𝑌 is called back-door
path, defined as a path that ends with an arrow pointing to 𝑋 . At
last, causes of variables should meet some requirement, as previous
works [33, 38] express in Principle 2.1:

Principle 2.1. ([33, 38]). Independent Causal Mechanisms
(ICM) Principle: The conditional distribution of each variable
given its causes, i.e., its mechanism, does NOT inform or influence
the other mechanisms.

2.1.2 Label prediction with SCM.. For causal learning for output
prediction, one line of work ascribes causes of observed variables to
the latent factors: those unobserved abstractions constitute inputs
and their outputs [20, 24, 41]. [24, 41] further assume that the latent
factors can be disentangled into output-causative factors and others
while there exist domain-specific correlation between them. Our
work adopts the above assumptions as our base SCM while under
the scenario of attack and defense, we build our SCM with two
main contributions: (i) while [24, 41] focus onOut-of-Distribution
(OOD) problem and only consider the natural sampling bias across
multiple environments/domains as the source, we focus on the sin-
gle domain shift incurred by the attack, and analyze the effect of
manually injected bias such as adversarial noise, which is necessary
and more realistic since it is very likely for practitioners to collect
artificial malicious examples from untrusted sources; (ii) we intro-
duce a domain variable to model the effect of domain shift on the
latent factors, resulted by the attack and defense. Though [41] also
adds a domain variable, it acts as the domain index, which is unob-
served and simple. However, we conceptually re-interpret attack
and defense in terms of domain effect (cf. Sec. 3.1) and explicitly
model domain effect in algorithm design (cf. Sec. 3.2 3.3).

2.2 Preliminaries for Attack and Defense
Without loss of generality, we use the image recognition task and its
conventional learning paradigm is to train a classifier 𝑓 : X → Y,
to minimize the loss 𝐿(·, ·). In this regard, standard training (ST)
works by empirical risk minimization (ERM) over the clean data,
which is defined as:

𝑅𝑛𝑎𝑡 (𝑓 , 𝐷) = E(𝑥,𝑦)∼𝐷 [𝐿(𝑓 (𝑥), 𝑦)] (1)

In terms of the attack and defense, a widely used constraint
especially in vision is that the added perturbation is within a ball,
B(𝑥, 𝜖) = {𝑥 ′ : 𝑑𝑝 (𝑥, 𝑥 ′) ≤ 𝜖}, and 𝑑𝑝 (𝑥, 𝑥 ′)= ∥ 𝑥 ′ − 𝑥 ∥𝑝 is the
similarity metric, and a common choice is ℓ-∞ norm.

2.3 Preserving Privacy via Train Data Poisoning
Delusive attack seeks to manipulate the train domain without dis-
turbing the original label, such that DNNs trained on it perform
worse on the original test domain, which is defined as:

max
�̂�𝑡𝑟𝑎𝑖𝑛 ∈B(𝐷𝑡𝑟𝑎𝑖𝑛,𝜖)

𝑅𝑛𝑎𝑡 (𝑓�̂�𝑡𝑟𝑎𝑖𝑛
, 𝐷𝑡𝑒𝑠𝑡 )

s.t. 𝑓
�̂�𝑡𝑟𝑎𝑖𝑛

= argmin
𝑓

𝑅𝑛𝑎𝑡 (𝑓 , �̂�𝑡𝑟𝑎𝑖𝑛)
(2)

2.4 Evaluating Robustness via Test Data Attack
Adversarial attack targets at test domain, producing adversarial
examples to fool DNNs while being imperceptible to human [13]. Its
goal can also be defined in a bi-level optimization form as follows:

max
�̂�𝑡𝑒𝑠𝑡 ∈B(𝐷𝑡𝑒𝑠𝑡 ,𝜖)

𝑅𝑛𝑎𝑡 (𝑓𝐷𝑡𝑟𝑎𝑖𝑛
, �̂�𝑡𝑒𝑠𝑡 )

s.t. 𝑓𝐷𝑡𝑟𝑎𝑖𝑛
= argmin

𝑓
𝑅𝑛𝑎𝑡 (𝑓 , 𝐷𝑡𝑟𝑎𝑖𝑛)

(3)

2.5 Lifting Robustness via Adversarial Training
For resistance of adversarial (delusive) attacks, adversarial training
(AT) [25] remains the most effective approach, by minimizing the
adversarial risk 𝑅𝑎𝑑𝑣 as follows:

𝑅𝑎𝑑𝑣 (𝑓 , 𝐷𝑡𝑟𝑎𝑖𝑛) = E(𝑥,𝑦)∼𝐷𝑡𝑟𝑎𝑖𝑛
[ max
𝑥 ′∈B(𝑥,𝜖)

𝐿(𝑓 (𝑥 ′), 𝑦)] (4)

3 METHODOLOGY
We build our causal graph from the causal data-generating process
to form a unified view of the attack and defense, depicted in our
Domain-attack Invariant Causal Model (DICM) in Sec. 3.1. Based on
our causal assumptions embedded in DICM, we further formalize
our causal invariance principle against domain shifts, which guides
us to infer invariant factors by causal intervention in Sec. 3.2 and
Sec. 3.3. Finally, we propose our causality guided criterion on per-
forming two attacks and one defense task in Sec. 3.4. Throughout
the paper, upper-cased letters like𝑋 denote random variables, while
lower-case letters like 𝑥 denote deterministic value of variables.

3.1 Domain-attack Invariant Causal Model
In this section, in line with the majority of literature, we study the
attack and defense for classification and present a causal view of the
data-generating process behind it. Specifically, as illustrated in Fig. 2,
we inspect the causalities among five variables: input data instance
𝑋 , instance-level label 𝑌 , causal factors 𝑆 , non-causal factors 𝑉 ,
and the domain variable 𝐷 , with a Structural Causal Model [12].
Following the discussion in Sec. 2.1.2, we next introduce the three
main causal assumptions in DICM.
• (𝑆 , 𝑉 )→ 𝑋 , 𝑆 → 𝑌 (latent generating mechanism)1: We

introduce two latent factors 𝑆 ,𝑉 as the abstractions that determine
the observed variables (𝑋 , 𝑌 ), which have been similarly assumed
1Note that we consider the scenario where 𝑋 and 𝑌 are generated concurrently, i.e.,
there is neither directed path from 𝑋 to 𝑌 nor 𝑌 to 𝑋 .
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Figure 3: Pipeline of Domain-attack Invariant Causal Learning. The green line corresponds to the data flow through the
confounding classifier, where 𝑣 ′𝑥 is the adversarial confounder being attacked. On the causal data flow via the orange line, both
the original input 𝑥 and intervened 𝑥𝑠 get inferred to the shared encoder to obtain output 𝑦𝑥 and 𝑦𝑠 respectively.

in existing works [24, 41]. To be specific, 𝑆 as the Y-causative factors
has a direct causal link to 𝑌 , which for example refers to the shape
or contour of an object, while the non-causal factors 𝑉 together
with 𝑆 , generate 𝑋 , and in OOD setting, the generation process
usually correlates with natural bias during sampling process, e.g.,
light or view, across multiple domains, while in the context of attack
and defense, we assume the domain shift is incurred by manually
injected bias, e.g., malicious noise by attacks. Different from [41], we
focus on𝑉 related to manual bias. Recall that the key constraint on
both adversarial and delusive attack is human-imperceptibility [13],
which means in the manner of human perception, 𝑋 (the appear-
ance of an object) and 𝑌 (the annotated label) remain unchanged.
Thus we argue that the attacks do not disturb the label-causative
factor 𝑆 , and 𝑆 → 𝑌 is invariant to domain shifts. However, the
counter-intuitive behavior of DNNs against attacked examples 𝑋
reveals that the attacker may exploit high-frequency components
to fool DNNs [48], which are not perceivable to humans and spu-
riously correlated with labels, i.e., 𝑉 . Therefore, the generative
mechanism (𝑆,𝑉 ) → 𝑋 on DNNs is different from humans. Beyond
such difference, there is a common property for both DNNs and
humans based on the ICM Principle (Principle 2.1): the generative
mechanism 𝑃 (𝑋 |𝑉 , 𝑆) is unaffected under the intervened domain
shift, i.e., 𝑃 (𝑉 , 𝑆 |𝑑𝑜 (𝐷)), which constitutes our main Assump. 3.1:

Assumption 3.1. (Causal Invariance over Attack-induced
Domain Shifts) By ICM Principle [33, 38], for causal models in
DICM, the 𝑃 (𝑋 |𝑆,𝑉 ) and 𝑃 (𝑌 |𝑆) are invariant to attack-induced
domain shifts.

We give further discussion based on the above assumption.
• 𝑆 ↔ 𝑉 (latent spurious correlation): We further assume

that there exists a spurious correlation between 𝑆 and 𝑉 , marked
as a bidirected arrow, which results from natural (manual) bias
in dataset, e.g., the background (𝑉 ) variation in data instances by
sampling (attacks). Such a correlation 𝑃 (𝑆,𝑉 ) opens a backdoor
path, i.e., 𝑉 ↔ 𝑆 → 𝑌 , between 𝑉 and 𝑌 , and we ascribe the
vulnerability of DNNs under delusive or adversarial attacks to the
learned spurious bias during fitting the dataset.
• 𝐷 → (𝑆,𝑉 ): For the correlation 𝑃 (𝑆,𝑉 ), we introduce an aux-

iliary variable 𝐷 . The magnitude of correlation can be either due to
the changing mechanism 𝐷 → (𝑆,𝑉 ) or the mutable distribution
of the confounder 𝐷 . Next we take a causal view to understand the
attack and defense with help of 𝐷 .

Causal view on criterion of attack and defense: So far, we
can utilize our causal tool to redefine the criterion of attack and
defense: given a data instance 𝑥 , the label 𝑦 and the target label
𝑦𝑡 , the attacker fools the DNN-based classifier, outputting 𝑦𝑡 in-
stead of 𝑦, by injecting 𝑣𝑡 , the target spurious features, into 𝑣 , or
in other words, disturbing 𝑃 (𝑆,𝑉 |𝐷) close to 𝑃 (𝑆,𝑉𝑡 |𝐷). The only
difference between delusive and adversarial attack is that the for-
mer intervenes on training domain 𝐷𝑡𝑟𝑎𝑖𝑛 while the latter does on
test domain 𝐷𝑡𝑒𝑠𝑡 . For defense, AT improves robustness via min-
imizing adversarial risk on malicious data. Since we assume that
malicious data is generated from 𝑃 (𝑆,𝑉𝑡 |𝐷), we further state that
AT improves model robustness by proactively fitting malicious data
from 𝑃 (𝑋 |𝑆,𝑉𝑡 ) to defend against future possible attacks. Moreover,
for the recent defense methods that require more data [5, 27] or
an ensemble of cross-domain models [28, 46], we argue that they
improve robustness by manipulating 𝑃 (𝐷), extending it from single
domain to multiple domains.

3.2 Causal Intervention by Backdoor
Adjustment

Assump. 3.1 motivates us to identify 𝑆 against 𝑉 to fundamentally
endow models with robustness or protect data against abuse. How-
ever, it is difficult to directly discover the causal factors 𝑆 from
the observed variables, since in our analysis DNNs also fit spuri-
ous bias 𝑉 for prediction. We propose to use causal intervention:
𝑃 (𝑌 |𝑑𝑜 (𝑋 )) to learn the invariant mechanism 𝑃 (𝑌 |𝑆). Since “phys-
ical” intervention on 𝑋 , i.e., collecting instances with all possible
views or backgrounds e.g. for images, is impossible, we apply back-
door adjustment [31] to do “virtual” intervention on 𝑋 in Eq. 5.

𝑃 (𝑌 |𝑑𝑜 (𝑋 ), 𝐷) =
∑︁
𝑣

𝑃 (𝑌 |𝑋,𝑉 = 𝑣)𝑃 (𝑣 |𝐷) (5)

Based on Assump. 3.1, 𝑃 (𝑌 |𝑋,𝑉 = 𝑣) is domain-agnostic as 𝐷 is
separated from𝑋 and𝑌 with given 𝑣 . Thus 𝑃 (𝑌 |𝑋,𝑉 ) generalizes to
test-domain 𝐷 = 𝑡 even if trained within domain 𝐷 = 𝑠 . Moreover,
by stratifying different values of confounder set V = {𝑣} in Eq. 5
and intervening 𝑉 as 𝑣 , we remove the causal link 𝑉 → 𝑋 . Since
𝑉 is also not observable, to this end, we approximate confounder
set V = {𝑣1, 𝑣2, . . . , 𝑣𝑛} using the class-wise instance-specific mask,
where 𝑛 is class size in dataset and 𝑣𝑖 ∈ Rℎ×𝑤 where ℎ ×𝑤 is the
instance size. We design an additional module to generate each
mask for class 𝑖 to approximate the non-causal part of this class. For
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𝑃 (𝑣 |𝐷), to avoid dependence of causal intervention on the training
domain, 𝑃 (𝑣 |𝐷) is set as the uniform 1/𝑛.

3.3 Domain-attack Invariant Causal Learning
Our framework consists of four components, as shown in Fig. 3 .

Confounder Generator.Motivated by the observation that loss
gradients from robust models align better with salient data features
and human perception, which well outlines the contour of an object
in images [21, 47] (see visualization in Fig. 2), in the context of image
classification, we specify to utilize magnitude of gradients as the
importance of pixels and generate the mask. Specifically, given
an instance 𝑥 , the label 𝑦, the intervention generator first adopt a
robust model with 𝑓𝑝𝑟𝑖𝑜𝑟 to obtain mask prior𝑀𝑝𝑟𝑖𝑜𝑟 , to output the
instance-specific confounder 𝑣𝑥 :

𝛿 = ∇𝑥𝐿(𝑓𝑝𝑟𝑖𝑜𝑟 (𝑥), 𝑦), 𝑀𝑖 𝑗 =

{0,max
𝑘

𝛿𝑖 𝑗𝑘 > 𝑑

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 𝑣𝑥 = 𝑀𝑝𝑟𝑖𝑜𝑟⊙𝑥

(6)
where 𝛿 ∈ Rℎ×𝑤×3 is the loss gradient of robust models, 𝑑 is the

threshold that determines the number of pixels as the confounder,
and ⊙ is the element-wise multiplication. For simplicity, we select
the value that excludes 50% pixels per image as 𝑑 in all experiments.
Moreover, we propose to adaptively update masks based on prior
from robust model and knowledge learned by our model during
training in a running average way, i.e.,𝑀 = 𝛼 ∗𝑀𝑜𝑢𝑟𝑠 + (1 − 𝛼) ∗
𝑀𝑝𝑟𝑖𝑜𝑟 , where 𝛼 increases monotonically with more epochs.

Confounder Replay Buffer. Unlike existing invariant learning
works [1, 6, 23] for OOD, which construct different domains by
partitioning the training set to infer the invariant features, we try
to identify invariant features on a single domain by causal interven-
tion, as shown in Eq. 5. To block all spurious paths from 𝑋 to 𝑌 , we
need intervene on all possible confounders 𝑉 , which is impractical.
In this regard, we collect 𝑣𝑥 of all the inputs computed previously
into a replay buffer and next randomly sample a confounder set
Ṽ = {𝑣1, 𝑣2, . . . , 𝑣𝑛} to conduct the intervention on the inputs of
the modules: encoder and classifiers.

Encoder & Classifiers. To measure the prediction discrimi-
nation of 𝑆 against 𝑉 , we employ a shared encoder ℎ with two
classifiers, 𝑔𝑠 and 𝑔𝑣 , where ℎ maps the intervened input 𝑥𝑠 to
representation z𝑠 ∈ R𝑑 , and 𝑔𝑠 projects z𝑠 into a probability dis-
tribution 𝑦𝑠 over class labels, shown in Eq. 7. Analogously, the
predictive power of confounder 𝑣𝑥 , i.e., 𝑦�̃� , can be measured via 𝑔𝑣 .

z𝑠 = ℎ(𝑥𝑠 ), 𝑦𝑠 = 𝑔𝑠 (z𝑠 ) (7)

To calculate Eq. 5, with the confounder set Ṽ, it takes 𝑛 times
forward pass, which is expensive. To address this challenge, we
adopt the Normalized Weighted Geometric Mean (NWGM) approx-
imation [52] to move the outer sampling over 𝑣 into the feature
level, i.e.,

∑
𝑣 𝑃 (𝑌 |𝑋,𝑉 = 𝑣)𝑃 (𝑣) ≈ 𝑃 (𝑌 |𝑋,∑𝑣 𝑃 (𝑣)𝑣), such that the

forward cost is reduced to only once. Furthermore, since we obtain
the pixel-level confounder 𝑣𝑥 , we constitute 𝑥𝑠 = 𝑥 +∑

�̃�∈Ṽ 𝑃 (𝑣)𝑣
by feature addition.

Optimization. Having obtained the prediction 𝑦𝑠 under causal
intervention, we can build our causal invariant risk 𝑅𝑠 as follows:

𝑅𝑠 (𝑓𝑠 , 𝐷) = E(𝑥,𝑦)∼D,𝑆=𝑥𝑠
[𝐿(𝑓𝑠 (𝑥𝑠 ), 𝑦)] (8)

where 𝑓𝑠 (·) denotes𝑔𝑠 ◦ℎ(·) for simplicity,D is the training domain.
Based on Eq. 8, we define the final risk 𝑅𝑐𝑎𝑢𝑠𝑎𝑙 by combining 𝑅𝑛𝑎𝑡
and 𝑅𝑠 with a tunable hyper-parameters 𝛽 as:

𝑅𝑐𝑎𝑢𝑠𝑎𝑙 (𝑓𝑠 , 𝐷) = E(𝑥,𝑦)∼D,𝑆=𝑥𝑠
[𝐿(𝑓𝑠 (𝑥), 𝑦) + 𝛽 ∗ 𝐿(𝑓𝑠 (𝑥𝑠 ), 𝑦)]

(9)
For optimizing 𝑔𝑣 , aiming at generating various and powerful

confounders that may not exist in original domain, we propose to
perform adversarial attack on the confounders 𝑣𝑥 and add them
into the replay buffer. The confounding adversarial risk 𝑅𝑐𝑜𝑛𝑓 is as
follows:

𝑅𝑐𝑜𝑛𝑓 (𝑓𝑣, 𝐷) = E(𝑥,𝑦)∼D,𝑉=�̃�𝑥

[
max

�̃�′𝑥 ∈B(�̃�𝑥 ,𝜖)
𝐿(𝑓𝑣 (𝑣 ′𝑥 ), 𝑦)

]
(10)

where 𝑓𝑣 (·) denotes 𝑔𝑣 ◦ ℎ(·). Overall, we can jointly optimize the
above two components:

min
ℎ,𝑔𝑠

𝑅𝑐𝑎𝑢𝑠𝑎𝑙 (𝑓𝑠 , 𝐷) +min
𝑔𝑣

𝑅𝑐𝑜𝑛𝑓 (𝑓𝑣, 𝐷) (11)

The training procedure and detailed implementations are sum-
marized in Appendix 7.1.

3.4 Causality guided Attack and Defense
In this subsection, we propose our causal invariant criterion to guide
the three mainstream tasks of trustworthy AI, aiming at boosting
their performance by the learned causal invariant features.

Delusive Attack: For this attack, we adopt the setting of [10],
which crafts attack examples based on standard training (ST) via
maximizing classification loss. Based on our causal classifier 𝑓𝑠
trained by Eq. 11, we propose to regularize the attack generating
process to focus more on causal features:

max
�̂�𝑡𝑟𝑎𝑖𝑛∼B(𝐷𝑡𝑟𝑎𝑖𝑛,𝜖)

[𝑅𝑛𝑎𝑡 (𝑓𝑏𝑎𝑠𝑒 , �̂�𝑡𝑟𝑎𝑖𝑛) +𝛾 ∗𝑅𝑛𝑎𝑡 (𝑓𝑠 , �̂�𝑡𝑟𝑎𝑖𝑛)] (12)

where 𝑓𝑏𝑎𝑠𝑒 is the standard trained classifier with 𝑓𝑠 as ours, and 𝛾
is a tunable hyper-parameter.

Adversarial Attack: For adversarial attack, we directly attack
our model via the causal classifier 𝑔𝑠 :

max
�̂�𝑡𝑒𝑠𝑡∼B(𝐷𝑡𝑒𝑠𝑡 ,𝜖)

𝑅𝑛𝑎𝑡 (𝑓𝑠 , �̂�𝑡𝑒𝑠𝑡 ) (13)

Adversarial Defense: For adversarial defense, our causal in-
variant criterion can be seamlessly integrated with popular defense
mechanisms such as PGD-AT [25], and TRADES [59]. Formally, we
introduce the adversarial risk in Eq. 4 into our causal invariant risk
in Eq. 9 as:

min
𝑓𝑠

max
�̂�𝑡𝑟𝑎𝑖𝑛∼B(𝐷𝑡𝑟𝑎𝑖𝑛,𝜖)

𝑅𝑐𝑎𝑢𝑠𝑎𝑙 (𝑓𝑠 , �̂�) (14)

Since we focus on defending against adversarial attacks on 𝑥 via
minimizing 𝑅𝑐𝑎𝑢𝑠𝑎𝑙 , we propose to stop the gradient flow of 𝑅𝑐𝑜𝑛𝑓
before the feature encoder to avoid the spurious bias resulted by
𝑣 ′𝑥 interferes with robust representation learning on 𝑥 .

4 RELATEDWORKS
OOD Generalization with Causality Previous studies mostly
seek to construct multiple domains/environments to infer causal
invariant features by either partitioning the training data by prior
knowledge [1, 6, 23, 24, 41], or adversarial environment inference [49,
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51], while our work focuses on single domain shift incurred by the
attack and defense. [34] proposes an adversarial domain augmen-
tation to achieve domain generalization based on a single domain
while it does not use causal assumptions. For causal assumptions,
the old school methods [3, 32] assumes causal relations directly
reside between observed inputs and outputs, which may not well
suit with visual data which is the majority of benchmarks, since
causality lies in conceptually latent space [24]. For latent factors,
we follow the assumption of [24, 41], i.e., the mechanism that maps
latent factors to observational distribution is invariant to domain
shift. However, we further propose our assumptions by (i) extend-
ing the cause of spurious relation from natural sampling bias to
manually injected bias such as adversarial noise; (ii) introduce a
domain variable to model the effect of attack and defense on la-
tent factors; (iii) propose our domain-attack invariance principle.
Moreover, [24, 41] infer latent factors with latent generative models
while we do by causal intervention [31]. Another similar work is
[26] which augments images by intervening non-causal factors in
self-supervised learning, while the causal factors actually depend
on non-causal ones for given inputs based on its assumption.

Adversarial robustness with causality The most relevant
work is ADA [61], which analyzes adversarial attack through a
causal lens. However, ADA assumes the independence between
causal factors and non-causal factors, which is unrealistic. Method-
ologically, ADA uses a “soft” intervention by penalizing the ad-
versarial distribution and the natural distribution while we ap-
proximate “hard” intervention by backdoor adjustment. More im-
portantly, our work provides a unified causal view of adversar-
ial(delusive) attack and defense together while ADA only considers
the adversarial data generating process. Another relevant work is
CAMA [56], which directly models the latent space with a genera-
tive model, being different from our causal inference from observed
data. Moreover, CAMA assumes the output is the cause of inputs,
which is impractical, e.g., intervening the label with noise by dis-
tracting the sampler does not change the image.

Causal Inference It is about causal-effect reasoning or counter-
factual learning by “do-calculus” intervention [30]. Recent works
mostly follow the causal assumption that the observed inputs have
a portion of causal relations with outputs [49, 53, 56], while [51]
generalizes similar hypothesis to non-Euclidean graph data for
capturing causal information among ego-graph features. However,
these studies focus on guiding the representation or predictor model
to leverage causality behind data, while our work designs an effec-
tive approximation of backdoor adjustment to directly infer causal
factors for robust learning purpose. Similarly, CONTA [57] and
CaaM [49] also utilize backdoor adjustment for causal inference,
besides difference in basic causal assumptions, our work differs
from them in two aspects: (i) we generate confounders based on
human-perception aligned gradients from robust models while
CONTA utilizes CAM and CaaM based on the attention module,
which is technically differently; (ii) we design a confounder replay
buffer with adversarial confounders added, bringing a more effi-
cient approximation of backdoor adjustment while such designs
are missing in CONTA and CaaM. Moreover, another related work
CATT [53] proposes to remove spurious bias on attention-based
vision-language models via a frontdoor adjustment, instead of our
backdoor adjustment.

Adversarial Attack Since the seminal works [13, 43] that reveal
the vulnerability of DNNs, studying stronger adversarial attacks
has become a trending direction, among which FGSM [13], PGD
attack [25], C&Wattack [4], and AutoAttack [8] become the popular
attack baselines to evaluate robustness of DNNs.

Delusive Attack Besides adversarial attack on test data, poison-
ing train data, i.e., delusive attack, recently has become a heated
topic for preserving data privacy. DeepConfuse [9] first applies
delusive attack to DNNs with auto-encoder. More delusive attacks
have been devised by adopting new techniques and approximations,
e.g., gradient alignment [11], computation graph unrolling [19] and
loss minimization objective [18], etc. Our work is based on loss
maximization objective [10], and further mitigates its limitation
against adversarial training by our learned causal features.

Adversarial Defense The discovery of adversarial examples
promote the development of defense methods, among which adver-
sarial training (AT) [25] is considered a principled defense against
adversarial attacks. Recent works also show the effectiveness of AT
against delusive attacks [10, 18, 44]. Moreover, many works analyze
the limitations of AT in two aspects: (i) the trade-off between accu-
racy and robustness [40, 47, 54, 59], (ii) robust overfitting [7, 36], for
which we take a causal view to derive our insight and solution in
this work. Many variants have also been proposed to improve AT
by appearance-similar regularization [35], rethinking the misclassi-
fied examples [50], sample-wise importance reweighting [60], and
adding more unlabeled data [5, 27]. Based on our causal graph, all
of them can be encapsulated into two types: (i) manipulating the
distribution of domain variable; (ii) changing the mechanism from
domain variable to latent factors.

5 EXPERIMENTS
We verify the efficacy of DICE on three downstream tasks. We
first show that our delusive attack is stronger than the current
state-of-the-art methods for better privacy protection (c.f. Sec. 5.1).
Secondly, DICE also improves transferability of adversarial attack
under the challenging black-box setting, even achieving compara-
ble performance to white-box attacks (c.f. Sec. 5.2). Finally, DICE
integrated with two defense paradigms exhibits better robustness
over their baselines (c.f. Sec. 5.3).

5.1 Improving Data Privacy Protection
Evaluationmetrics and training details. In Sec. 3.4, we introduce
our delusive attack based on TAP [10]. In line with TAP, we perform
delusive attack on the base model, then train victim models on
the poisoned data and compute its accuracy on clean test data to
measure the attack’s performance.

Attack Models. To fairly compare our method with EM and
TAP, we use ResNet-18 (RN18) [15] as the backbone of all methods
to generate poisoned data. In line with TAP, we perform PGD-
200 [25] attack to craft poison data examples under 𝑙-∞ norm with
𝜖 = 8/255, and we adopt the differentiable data augmentation from
TAP to further improve the potency of the generated poisons.

Defense Models To fully evaluate the attack performance, sim-
ilar to TAP, we test two data augmentations not known to the
attacker during generating poisons, Gaussian Smoothing (GS) and
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Table 1: Test accuracy (%) trained on poisoned data protected
by defensive noises including MIXUP, DGSGD, and adver-
sarial training with different perturbation radii 𝜖. EM: error-
minimizing noise. TAP: targeted adversarial poisoning noise.

Defender
Attacker Clean EM TAP DICE (ours)

Standard Training 94.66 34.74 12.20 6.70
Gaussian Smoothing 95.09 40.49 31.13 9.88

MIXUP 95.77 46.87 19.88 14.35
AT (𝜖=1/255) 93.74 79.04 12.98 8.15
AT (𝜖=2/255) 92.37 91.84 23.25 15.79

(a) Evaluation results on CIFAR10.

Defender
Attacker Clean EM TAP DICE (ours)

Standard Training 78.25 15.99 32.75 24.57
Gaussian Smoothing 77.05 18.05 30.90 24.30

MIXUP 78.99 34.43 35.28 34.03
AT (𝜖=1/255) 70.12 66.95 53.71 52.11
AT (𝜖=2/255) 67.54 65.64 67.38 65.24

(b) Evaluation results on CIFAR100.

Table 2: Test accuracy (%) of DICE vs. TAP with different data
protection proportions on CIFAR10.

Model
Data Protection Proportion

20% 40% 60% 80%
mixed clean mixed clean mixed clean mixed clean

TAP 90.47 94.81 86.52 93.90 78.80 92.12 56.37 86.60DICE 85.95 74.16 65.90 56.25

Mixup [58], which mixes inputs and outputs during training. More-
over, we test adversarial training, a powerful defense against recent
delusive attacks [10, 18, 44], see training details in Appendix 7.2.2.

Baseline CIFAR10 & CIFAR100 Results. Table 1 shows the
result of delusive attack. Our DICE generates more powerful poi-
soned data over the state-of-the-art EM and TAP attacks against all
defenses. Even under AT, our poisoned data still remains its effec-
tiveness. We report more results under AT with larger perturbation
radii 𝜖 in Appendix 7.2.3, which our attack consistently shows its
advantage. It is worth noting that AT might not be an ideal solu-
tion for delusive attack, since it is computationally expensive and
degrades clean accuracy especially for large scale dataset, e.g., in
Table 1, CIFAR100 under AT (𝜖=2/255) drops from 78.25% to 67.54%
without being attacked.

Less Data. We then study a more challenging and realistic sce-
nario, where only part of data is protected, i.e., being poisoned.
Specifically, we randomly select a certain proportion of data from
CIFAR10, poison them, and train models on the mixed data and the
remaining clean data. Table 2 shows that (i) models trained onmixed
data perform worse than only clean data in all cases, verifying the
effectiveness of poisons; (ii) as data protection proportion increases,
i.e., more poisoned data is added, both of attacks become stronger
while DICE is consistently stronger than TAP. Since EM [18] are ob-
served to be slightly helpful when combined with clean data, we do
not report results of EM. All poisoned data are crafted by PGD-50.

Transferability. We further test the transferability of our delu-
sive attack. Specifically, we select RN18 as the surrogate model on

Table 3: Test accuracy (%) on CIFAR10 w/ different backbones
as attack target in DICE and TAP-based transfer attacks.

SURROGATE
TARGET VGG19 GoogleNet DN121 MOB-V2

TAP 11.78 10.59 9.89 7.27
DICE (ours) 9.17 6.42 8.72 7.19

Table 4: Test accuracy (%) on CIFAR10 of different target mod-
els in transfer-based FGSM and PGD-100 black box attacks,
which are generated based on WRN (baseline) and DICE. We
also report the results of white-box attacks directly on target
models.

SURROGATE
TARGET VGG16 RN18 RN50 DN121

WRN 67.18 61.66 64.35 74.54
DICE (ours) 43.91 34.97 39.73 51.42
White-box 52.69 36.84 33.68 38.67

(a) Evaluation results under FGSM attack.

SURROGATE
TARGET VGG16 RN18 RN50 DN121

WRN 69.23 48.94 56.62 80.49
DICE (ours) 9.95 2.8 5.68 24.27
White-box 0.01 2.40 1.78 0.22
(b) Evaluation results under PGD-100 attacks.

which poisoned data gets crafted by PGD-200, then train various
target models on the poisoned data. For a thorough evaluation, we
select VGG19 [39], GoogleNet [42], DenseNet-121 (DN121) [17] and
MobileNet-V2 (MOB-V2) [16] as target models. Results of Table 3
show that our DICE is stronger than TAP across all targets models.

Ablation Study.We perform a sensitivity analysis about 𝛾 of
Eq. 12 in Appendix 7.2.4. We also compare the effects of different
attack steps during crafting poisoned data on model performance.
See Appendix 7.2.5 for details. Finally, we present time complexity
analysis in Appendix 7.2.6.

5.2 Improving Transferability of Adversarial
Attack

Evaluation metrics and training details. To evaluate the trans-
ferability of attacks, we generate adversarial examples based on
surrogate model, then transfer those examples to target models to
compute the test accuracy as a measurement. For a thorough eval-
uation, we perform FGSM [13] and PGD-100 attacks on CIFAR10
respectively, which get crafted under the 𝑙∞ norm with 𝜖 = 8/255.

Baseline Models. To cover as many different deep architectures
as possible, we select VGG16 [39], ResNet-18 (RN18), ResNet-50
(RN50) [15], and DenseNet-121 (DN121) [17] as our target models.
We reproduce these models based on a popular Github repository2.
For a fair comparison, we select WRN-34-10 (WRN) [55], the back-
bone of our model, as the surrogate model baseline.

Transfer attack results. Table 4 shows that our model consis-
tently achieves stronger transferability over the target models than
WRN by a huge margin, which is comparable to white-box attacks
that have the full knowledge of target models.

2https://github.com/kuangliu/pytorch-cifar
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Table 5: Test accuracy (%) of DICE-M with different regular-
ization hyperparameter 𝛽 values on CIFAR10 Under WRN.

𝛽 Clean PGD-20 C&W-20
0 82.88 46.59 49.19
1 82.81 47.04 50.97
2 81.98 47.73 50.36
3 82.26 48.51 51.24
4 83.18 49.28 51.96
5 82.67 48.54 52.52

Table 6: Test Accuracy (%) of our DICE-M and DICE-T vs.
Baselines on CIFAR100 Under WRN.

Defender
Attacker Clean FGSM PGD-100 C&W-100 AA.

PGD-AT 66.26 35.31 22.95 24.39 22.01
TRADES 58.64 37.12 26.63 24.48 23.2
DICE-M 67.15 37.4 24.35 26.99 23.61
DICE-T 59.84 39.88 28.42 26.37 25.73

5.3 Improving Robustness over Adversarial
Training

Evaluation metrics and training details. For robustness evalua-
tion, we craft adversarial examples under 𝑙-∞ norm with 𝜖 = 8/255
by FGSM, PGD, C&W [4] attacks, and AutoAttack (AA.) [8]. We
choose WRN-34-10 (WRN) as the backbone for both CIFAR-10 and
CIFAR-100. We adopt the hyper-parameters recipe for training sug-
gested by [29] and robustness is evaluated on the last checkpoint
of all models. More training details is given in Appendix 7.3.

Baseline Models. We propose our causal guided adversarial
defense objective in Eq. 14. We apply our DICE to two popular
defense paradigms, PGD-AT [25] and TRADES [59] respectively, to
build our robust model, named DICE-M and DICE-T.

Sensitivity of regularizationhyperparameter 𝛽 onCIFAR10
As Eq. 9 shows, 𝛽 is an important hyper-parameter. In Table 5, we
select WRN as the backbone and compare PGD-AT baseline to
DICE-M with different 𝛽 values, and find that as 𝛽 ∈ [0, 4], larger 𝛽
brings better clean accuracy vs. robustness trade-off than baseline
(𝛽=0). However, as 𝜆 further increases, e.g., 𝛽 = 5, our model starts
to overfit the adversarial noise induced by the C&W attack since
its robustness begins to decrease under PGD attack. Therefore, we
set 𝛽 as 4 for both CIFAR-10 and CIFAR-100.

Performance on CIFAR-100 Besides CIFAR-10, we further
apply our method on CIFAR-100 and Table 6 shows that our two
variants DICE-M and DICE-T consistently exhibit better robustness
than their baseline PGD-AT and TRADES respectively under var-
ious attacks including AutoAttack. Moreover, DICE helps robust
baselines with a better trade-off between accuracy and robustness:
all variants enjoy better test accuracy than their baselines.

Consideration of gradient obfuscation To exclude the pos-
sible effect of obfuscated gradients that give a false sense of secu-
rity, we perform a series of sanity checks suggested by [2]: (i) on
CIFAR-10, our model shows stronger robustness under FGSM at-
tack (64.18%) than multi-step attack: PGD-20 (49.28%) and C&W-20
attack (50.95%); (ii) our models show stronger robustness under
black-box PGD-20 attacks (78.50%) than white-box PGD-20 attacks
(49.28%); (iii) PGD attacks with more steps become stronger, i.e.,
our models exhibit stronger robustness against PGD-20 (49.28%)
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Figure 4: Natural (Robust) test accuracy of PGD-AT (red line)
and DICE-M (blue line) trained using WRN-34-10 on CIFAR-
10 under PGD-20 attack during training. PGD-AT-Nat and
PGD-AT-Adv mean the accuracy of PGD-AT on natural and
adversarial data respectively, which also applies to ourmodel.
To better verify the effectiveness of our model on mitigating
robust overfitting, the learning rate gets decayed at 30 and 60
epochs during the whole 100 epochs.

than PGD-100 (48.57%). Therefore, according to the criterion given
by [2], we believe that the robustness of our model does not result
from obfuscated gradients.

Consideration of adaptive attack Based on the adaptive at-
tack criterion [45], we generate attacks by maximizing our causal
invariant risk 𝑅𝑐𝑎𝑢𝑠𝑎𝑙 , i.e., Eq. 9 and DICE-M on CIFAR-10 achieves
49.04% robust accuracy under the adaptive PGD-20 attack com-
pared to 49.28% under vanilla PGD-20 attack, showing our model
consistently achieves strong robustness even under a specifically
designed attack.

Mitigating robust overfitting Robust overfitting is a common
limitation existing in current defense methods [7, 36], which means
that model robustness on test data begins decreasing after the first
learning rate decay while robustness on train data keeps increasing.
The test accuracy plot in Fig. 4 shows that our model indeed miti-
gates this limitation with both better clean accuracy and robustness,
which is aligned with our analysis.

6 CONCLUSIONS
In this paper, we take a bottom-up view to model the latent data
generating process and understand the limitations of the attack
and defense. In specific, we propose our causal graph and show
that the spurious correlation between latent factors and outputs
is exploited by attacks while the defense also learns to fit such
spurious relations to defend against attacks, and such reliance may
result in poor generalization defense. Therefore, we argue that
inferring causal relations like humans is important for improving
both attack and defense. Inspired by our causal graph, we propose a
causal inference pipeline to learn domain-invariant features via an
effective approximation of causal intervention. Experimental results
verify the utility of our method, bringing better privacy protection
on delusive attack, improved transferability on adversarial attack,
and higher robustness on defense.
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7 APPENDIXES
7.1 Domain-attack Invariant Causal Learning
7.1.1 training details. Models are trained on the SGM optimizer
with momentum 0.9, weight decay 0.0005, and batch size 128. For
both CIFAR10 and CIFAR100, we set the learning rate as 0.1, which
gets decays at 100 and 105 epochs with total 110 epochs. 𝛽 in Eq. 9
is kept as 1.0 for both delusive attack and adversarial attack, and
4.0 for adversarial defense.

For generating confounders, we find that directly relying on the
current model without prior model achieves comparable or even bet-
ter performance than ensembling the two models together. There-
fore, we only utilize our current model to generate confounders.

For confounder replay buffer, since our confounder gets updated
during training, the newly added confounders are relatively more
important than old ones. So when sampling confounder set, we
assign each confounder with a timestamp, which gets decayed since
being first added, thus those newly added confounders are more
likely to be sampled during training. We set the maximum size of
reply buffer as 10000 and the confounder set size is set as 20.

7.2 Causality guided Delusive Attack
7.2.1 Hyper-parameters and training details for delusive attack.
We follow TAP [10] to perform delusive attacks. For the standard
trained classifier, it is trained for 40 epochs with a batch size of
128, a momentum factor of 0.9, a weight decay factor of 0.0005, an
initial learning rate of 0.1, and a learning rate scheduler that decays
learning rate by 0.1 after 15, 25 and 35 epochs.

The regularization hyper-parameter 𝛾 is set to 0.5 for every ex-
periment. For CIFAR10, attack iteration is set to 200. For CIFAR100,
attack iteration is set to 50.

7.2.2 Hyper-parameters and training details for evaluatioin. We fol-
low TAP [10] to craft poisoned data on a fixed pretrained model. For
pretraining, the classifier is trained for 200 epochs with a batch size
of 128, a momentum factor of 0.9, a weight decay factor of 0.0005,
an initial learning rate of 0.1, and a CosineAnnealing learning rate
scheduler.

For the adversarial training paradigm used in defending delusive
attacks, we follow the official setting of PGD-AT [25] and build the
PGD-7 attack adversary with a relative step size 0.25. Classifiers
are trained for 100 epochs with a batch size of 128, a momentum
factor of 0.9, a weight decay factor of 0.0005, an initial learning rate
of 0.1, and a learning rate scheduler that decays learning rate by
0.1 after 40 and 80 epochs.

7.2.3 More results under stronger AT. To fully compare the effect
of AT against delusive attack, we perform stronger AT with larger
perturbation budget 𝜖=3/255 and 4/255 on DICE and TAP. Table 7
shows that when 𝜖=3/255, DICE is stronger then TAP while with
𝜖=4/255, the protection of both DICE and TAP becomes worthless.
However, as we argue in our paper, a large AT perturbation would
induce lower natural accuracy, hindering its applicability, thus it
may not be the ideal solution for delusive attacks.

7.2.4 Sensitivity analysis of the regularization hyper-parameter 𝛾 .
Eq. 12 tells that 𝛾 is an important regularization hyper-parameter
for our delusive attack. For this experiment, we employ PGD-50

Table 7: Test accuracy (%) of DICE vs. TAP under AT with
different perturbation radii 𝜖.

Defender
Attacker Clean TAP DICE(ours)

AT(𝜖 = 3/255) 89.23 85.34 78.56
AT(𝜖 = 4/255) 88.26 87.61 87.50

(a) Evaluation results on CIFAR10.

Defender
Attacker Clean TAP DICE(ours)

AT(𝜖 = 3/255) 66.47 64.04 62.52
AT(𝜖 = 4/255) 64.33 62.20 61.27

(b) Evaluation results on CIFAR100.

Table 8: Test accuracy (%) of DICE with different regulariza-
tion hyper-parameter 𝛾 on CIFAR10. FGSM denotes adver-
sarial training under FGSM attack.

Defender
𝛾 0.1 0.5 1.0

ST 10.67 9.87 7.58
FGSM 21.00 19.35 19.07

Table 9: Test accuracy (%) of DICE with different PGD attack
steps on CIFAR10.

Defender
Attack steps 50 100 200

ST 13.21 10.21 6.70
AT(𝜖=1/255) 34.55 17.66 8.15
AT(𝜖=2/255) 79.19 43.36 15.79

attack to perform delusive attack. In Table 8, we compare the effect
of different 𝛾 values and find that larger 𝑔𝑎𝑚𝑚𝑎 leads to more
effective delusive attack.

7.2.5 Sensitivity analysis of different attack steps. Another impor-
tant hyper-parameter of delusive attacks is the attack steps. Table 9
shows that more attack steps induce stronger poison attacks. For a
better trade-off between computation cost and performance, in our
paper, we finally choose poison data by PGD-200 step attack.

7.2.6 Time complexity analysis. In line with TAP, our method en-
joys the same advantage of the ease of crafting perturbations: we
craft the poisoned data on a fixed pretrained model, without extra
training cost. In contrast, DeepConfuse [9] needs training an adver-
sarial auto-encoder (57̃ GPU days on simple datasets) and EM [18]
needs iteratively updating model and poisons until the evaluation
metric meets their threshold. Moreover, EM also needs grasp the
whole training dataset at once, which is less realistic.

7.3 Causality guided Adversarial Training
7.3.1 Training details. We craft PGD attacks under the 𝑙-∞ norm
with 𝜖=8/255 in all defense experiments. In training, we use the
PGD-10 attack adversary with a step size of 0.25. Models are trained
on the SGM optimizer with momentum 0.9, weight decay 0.0005,
and batch size 128. For CIFAR10/100, we set the learning rate as 0.1,
which gets decays at 100 and 105 epochs with total 110 epochs.
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