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Communication Between Automated Vehicles and Drivers in Manual 
Driving Vehicles: Using a Robotic Arms to Produce Gestures  
 

Abstract 1 

Effective communication between automated vehicles and human drivers in manual 2 

driving vehicles is of great importance for traffic safety during the transition phase of 3 

automated vehicles. Gestures, which were widely used in road users’ communication, 4 

were promising in conveying the intentions of automated vehicles naturally and 5 

intuitively without extra learning costs. However, the effect of gestures in conveying 6 

the automated vehicles’ intentions on human understanding remains unknown. This 7 

study proposed the idea of adopting robotic arms to produce gestures. An experiment 8 

based on video recordings was conducted to explore the effect of arms type (slow-9 

waved robotic arm (80 beats/min) vs. fast waved robotic arm (120 beats/min) vs. human 10 

arm) and gesture type (taking the road vs. giving the road) on the participants’ objective 11 

responses and subjective opinions. A total of 30 participants were recruited as human 12 

drivers in a manual driving vehicle, who received and responded to the gestures 13 

transferred by an encountering automated vehicle. Results indicated that regardless of 14 

the gesture type, the slow-waved robotic arm led to a longer response time (mean ± SD: 15 

4.871 ± 0.947 s) and lower response accuracy (88.3 ± 32.4 %) when compared with the 16 

human arm (response time: 4.457 ± 0.727 s, response accuracy: 95.0 ± 22.0%). It was 17 

also rated less understandable and comfortable than the human arm. Nevertheless, the 18 

fast-waved robotic arm not only exerted as fast (4.484 ± 0.818 s) and accurate responses 19 

(98.3 ± 12.9 %) as the human arm but was also rated as understandable, polite, and 20 

comfortable as the human arm. This indicated the implication of conveying gestures by 21 

utilizing the fast-waved robotic arm (120 beats/min) to facilitate effective 22 

communication from automated vehicles to human drivers in manual driving vehicles. 23 

The present study’s findings provided reference implications for manufacturers and 24 

designers to adopt this gesture-based communication method to develop safe and user-25 

friendly automated vehicles. 26 

Keywords: automated vehicle; human drivers; gestures; robotic arms 27 

 28 
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1 Introduction 29 

1.1 Background 30 

The future transportation system would be largely changed with the development 31 

of automated vehicles, which have great potential in optimizing traffic flow, reducing 32 

road accidents, alleviating air pollution, improving driver comfort, and so on (Anderson 33 

et al., 2014; Aoki et al., 2021; Maurer et al., 2016; Millard-Ball, 2018). The Society of 34 

Automotive Engineers (SAE) classified driving automation into six levels, with the 35 

automation above level 3 no longer requiring drivers to supervise the traffic 36 

environment (SAE International, 2021). A long transition phase would emerge before 37 

manual driving vehicles were completely replaced by automated vehicles, which 38 

contained both manual driving and automated vehicles on the road (Aoki et al., 2021). 39 

Thus, under this transition phase, the automated systems and human drivers from 40 

manual driving vehicles must understand each other and cooperate to maintain a safe 41 

and orderly traffic environment (Aoki et al., 2021; Xing et al., 2021). 42 

From the automated vehicles’ perspective, algorithms can be designed and 43 

improved constantly to understand the human drivers’ behaviors by processing the real-44 

time information gathered by lidar, radar, and cameras (Deo et al., 2016; Flores et al., 45 

2018; Mukhtar et al., 2015). However, humans processed the road information with 46 

their brains, which had limited cognitive resources (Kahneman, 1973). Their 47 

understanding of the traffic environment usually relies on mutual communication such 48 

as the direct physical movements of the vehicle (e.g., yielding or approaching the left 49 

lane), the signals sent by the drivers (e.g., honking and lighting), and non-verbal 50 

communication methods, which included facial expressions, eye contact, gestures (e.g., 51 

waving hands), body movements, and the voice and tone of speech (Merten, 1997; 52 

Sucha et al., 2017). However, in the mix of manual driving and automated vehicles, 53 

human drivers cannot always communicate directly and timely. It is because the driver 54 

in automated vehicles (especially for automation above level 3) are more likely to 55 

engage in non-driving related tasks without participating in driving tasks (Maurer et al., 56 

2016). Inappropriate actions may be taken if manual drivers misunderstand the 57 

intentions of automated vehicles, which would increase accident risks and impact traffic 58 

efficiency (Fuest et al., 2020). Therefore, it is important for the automated system to 59 
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effectively and properly communicate with human drivers to make them understand its 60 

intentions (Lee et al., 2010; Rasouli & Tsotsos, 2019). 61 

 62 

1.2 Gestures as promising communication methods 63 

In the past few decades, researchers have widely explored effective communication 64 

methods and messages between automated vehicles and road users (Xing et al., 2021). 65 

The communication methods included passive signs such as delivering alerts through 66 

bracelets or smartphones (Mahadevan et al., 2018; Rahimian et al., 2016), vehicle 67 

motion characteristics (Fuest et al., 2020; Rettenmaier et al., 2021), and external 68 

human-machine interfaces (eHMIs) such as transferring messages by LED light panels 69 

with textual or specific signs (Clamann et al., 2017; De Clercq et al., 2019; Faas & 70 

Baumann, 2021; Fiedler & Spelten, 2017; Habibovic et al., 2018). Moreover, the 71 

communication messages transferred by those methods can be classified into base 72 

messages (i.e., the driving modes and perception of automated vehicles), intention 73 

messages (i.e., inform the automated vehicles’ intention and decision for the next 74 

action), and instruction messages (i.e., instruct the road users how to act) (Xing et al., 75 

2021; Zandi et al., 2020; Zhang et al., 2017), with the intention messages was relatively 76 

more important than others. 77 

However, several limitations existed in the communications above. First, extra 78 

learning costs existed in some designed eHMIs. For instance, the participants needed a 79 

pretraining to learn the meaning of the proposed light interface that represented the 80 

states of automated vehicles before making a judgment (Habibovic et al., 2018). Second, 81 

some proposed interfaces may not be universally applicable or equally necessary when 82 

communicating between automated vehicles and people from different backgrounds. 83 

For instance, based on an international study, Zandi et al. (2020) found that people from 84 

different countries showed different views on the importance of communication 85 

messages between automated vehicles and pedestrians. Take the message “Warning, I 86 

am dangerous!” as an example, it was served quite important for people in the USA, 87 

while it was rated close to meaningless for people in Germany in a circumstance when 88 

automated vehicles ignored the pedestrian’s intentions (Zan di et al., 2020). It might be 89 

because of the variety of languages, road cultures, and norms, people from various 90 
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regions interact with automated vehicles differently (Currano et al., 2018; Färber, 2016; 91 

Li et al., 2020), and their expectations for human-machine interfaces varied (Alexander 92 

et al., 2017; Weber et al., 2019). 93 

By contrast, gestures, which had been widely used in daily life, served as a 94 

pervasive and promising communication method (Maurer et al., 2016). Compared with 95 

previously mentioned communication methods, conveying intentions through gestures 96 

has unique advantages. First, gestures are generally natural and intuitive (Khan & 97 

Tunçer, 2017). Humans can perceive and understand gestures immediately and directly 98 

at first glance with little extra learning cost. Second, the understanding of gestures may 99 

be relatively more consistent across people from various backgrounds when compared 100 

with eHMIs, especially for the text and speech content that varies by language. 101 

Although some symbol-based eHMIs were proved in uniform intention recognitions 102 

(Singer et al., 2020) and stable effects on crossing decisions (Joisten et al., 2021) of 103 

humans from different nationalities, some of these effects might be attributed to the pre-104 

explanation of symbols in the study (Singer et al., 2020). Based on the findings of 105 

gestures consistency across countries (Meier et al., 2014; Pika et al., 2009; Gupta et al., 106 

2016), conveying intentions of automated vehicles by gestures has the advantage of 107 

being understood without pre-explanations by people from different countries. Third, 108 

gestures can convey comprehensive and clear signals by simply waving hands or arms. 109 

For instance, a gesture of offering with the palm facing upward denoted “Go ahead, I 110 

am giving the road for you” (Färber, 2016; Maurer et al., 2016). Hence, conveying the 111 

intentions of automated vehicles in gestures would be a humanoid way, which may 112 

prompt the direct and rapid human understanding of the automated vehicle’s intentions 113 

by serving it as a driver in the traditional traffic environment.  114 

 115 

1.3 Convey gestures by robotic arms 116 

With the potential of gestures in conveying the intentions of automated vehicles, 117 

we raised the following question: how to convey these gestures by automated vehicles? 118 

Previous studies indicated that programming gestures into robotic arms could 119 

effectively prompt human-machine/computer interactions (Gleeson et al., 2013; Salem 120 

et al., 2012; Sheikholeslami et al., 2015, 2017). For example, in exploring the efficacy 121 
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of the robot hand in expressing instructional gestures for human-robot interactions in 122 

assembly tasks, Sheikholeslami et al. (2017) found that humans can recognize the robot 123 

gestures with a recognition rate greater than 60%. Gleeson et al. (2013) also observed 124 

that humans could easily interpret the gestures transferred by the robotic system. Apart 125 

from being recognizable, the robot gestures can also gain positive evaluation from 126 

humans in the quality of presentation and perception (Salem et al., 2012). Given the 127 

effectiveness of robotic gestures in human-robot interaction, transferring gestures by 128 

robotic arms may be a promising way of realizing the communication between 129 

automated vehicles and manual drivers. 130 

Some critical parameters, which may influence the effectiveness of robotic arms in 131 

transferring gestures (e.g., speed, amplitude, repetition, and arm extension) (Deshmukh, 132 

Craenen, Foster, et al., 2018; Xu et al., 2013), should be considered when adopting the 133 

robotic arms. Particularly, the speed of gestures was one of the major parameters that 134 

characterized any natural and synthetic gestures (Deshmukh, Craenen, Vinciarelli, et 135 

al., 2018). Researchers indicated that speed was an essential parameter that influenced 136 

the human perception of robotic gestures (Berger et al., 2021; Moon et al., 2013; Riek 137 

et al., 2010) and was an important cue that humans used to interpret the robot’s 138 

intentions (Lohse et al., 2013). For example, Berger et al. (2021) found that when 139 

changing the speed of gestures, humans perceived the gestures with different meanings 140 

during the interaction with robots. The diversity of gestures for changing the speed 141 

would be useful in social human-machine interaction. However, when it comes to 142 

human drivers and automated vehicle communication, the most important thing is to 143 

ensure that human drivers can correctly perceive and understand the meaning of 144 

gestures in automated vehicles. If drivers misunderstand the meaning of gestures and 145 

misinterpret them when the waving speed of robotic arms changes, unpredictable traffic 146 

accidents may happen. Therefore, exploring whether human drivers can correctly 147 

understand the meaning of robotic gestures at different speeds is crucial. However, to 148 

our knowledge, no studies had applied the robotic arms in conveying gestures of 149 

automated vehicles to road users, leaving the effect of robotic arms with different 150 

speeds on human drivers and automated vehicle communications remain unknown. 151 

Based on the summary of the studies above, gestures produced by robotic arms 152 
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have great potential in effectively conveying the intentions of automated vehicles. 153 

Nevertheless, utilizing the robotic arms to produce gestures in communication between 154 

the automated vehicles and human drivers in manual driving vehicles was unexplored. 155 

Some researchers utilized gestures in human-automated vehicle communications. For 156 

instance, Epke et al. (2021) investigated the gestures in communication between road 157 

users and automated vehicles. However, they focused on the hand gestures used by 158 

pedestrians in intention communication to the automated vehicle rather than using the 159 

gestures to indicate the automated vehicle’s intentions. Oudshoorn et al. (2021) 160 

designed a gesture-based eHMI, which consisted of flaps on the left, right, and top of 161 

the automated vehicles to show the yielding or non-yielding intentions to road users. 162 

Nevertheless, the gestures conveyed by flaps were inspired by the elephants, which 163 

differed from the humanoid gestures based on robotic arms that the present study 164 

suggested. Moreover, when most studies focused on the communication between the 165 

automated vehicles with pedestrians (Epke et al., 2021; Fuest et al., 2020; Oudshoorn 166 

et al., 2021; Rettenmaier et al., 2021), the communication between the automated 167 

vehicles with human drivers in manual driving vehicles was less concerned. 168 

 169 

1.4 Aim of the present study 170 

This study aimed to (1) investigate the effect of using robotic arms to produce 171 

gestures in conveying the intentions of automated vehicles compared with the human 172 

arm; (2) explore whether the speed of robotic arms would influence the human 173 

responses and understandings of different gestures.  174 

In this study, the automation above level 3 was considered for the reason that the 175 

drivers were no longer required to monitor the road (SAE International, 2021) and were 176 

more likely to be absent in intention communications with other road users. In addition, 177 

two basic gestures when it comes to the conflicts of using roads were considered: taking 178 

the road (i.e., passing the road directly) and giving the road (i.e., waiting for others to 179 

pass) (Weber et al., 2019; Gupta et al., 2016).  180 

 181 

2 Methods 182 

2.1 Participants 183 
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A total of 30 participants (15 males and 15 females) ranging from 18 to 30 (Mean 184 

= 21.43, SD = 3.18) engaged in the experiment. All participants were required to have 185 

the normal or corrected-to-normal vision and own valid driving licenses. Their driving 186 

experience was from one to five years (Mean = 2.0, SD = 0.83). The present study was 187 

approved by the Institutional Review Boards (IRB) of University at Buffalo. 188 

2.2 Experiment Design and measures 189 

This study adopted a 2 × 3 within-subject design. Independent variables were the 190 

gesture type (taking the road vs. giving the road) and arm type (human arm vs. fast-191 

waved robot arm vs. slow-waved robot arm). Two commonly used gestures were 192 

transferred to participants. A holding vertical hand gesture was designed as a “taking 193 

the road”, and a moving gesture by the palm facing toward them was designed as a 194 

“giving the road”. Three types of arms were utilized to transfer these gestures. That is, 195 

participants experienced two robotic arms with fast (120 beats per minute) and slow 196 

(80 beats per minute) speeds and one human arm (set as the control condition). A total 197 

of six conditions were presented to participants.  198 

This study collected the participants’ objective responses and subjective opinions 199 

about gestures conveyed by automated vehicles. Two measurements were recorded to 200 

evaluate the participants’ behaviors: 1) Response time: the time between the onset of 201 

gestures and the moment the participants pressed the spacebar on a keyboard, which 202 

action meant they understood the gestures. 2) Response accuracy: the participants 203 

responding accurately (recorded as 1) or not (recorded as 0) for corresponding 204 

transferred gestures. Three measurements were collected to evaluate the participants’ 205 

subjective attitude toward the gestures conveyed by the automated vehicle: 1) 206 

Understanding: the understanding of the participants for gestures transferred by 207 

different arms by asking “how well did you understand the gesture given?”; 2) 208 

Politeness: the politeness of gestures transferred by different arms by asking “how 209 

polite was the gesture given?”; 3) Comfort: the comfort level the participants 210 

experienced for gestures transferred by different arms by asking “how comfortable did 211 

you feel by the gesture given?”. To minimize the misuse of a midpoint and to find an 212 

optimal response, the above subjective measurements were all based on a four-point 213 

Likert scale (omit the midpoint) from “not at all” to “very much” (Chyung et al., 2017).  214 
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 215 

2.3 Materials 216 

For safety considerations, this study adopted the laboratory experiment. The real 217 

gesture transferring scenarios were filmed into videos in advance. The following were 218 

steps to generate the gesture transferring scenarios. 219 

Step1: building a robotic arm and generating gestures 220 

The robotic arm included the plastic hand and arm parts. In building the plastic 221 

hand, the sizing was based on average male hand anthropometry, with the hand length 222 

being 0.188 meters and the palm's width being 0.08 meters (Pheasant & Haslegrave, 223 

2018). The color of the hand and arm were chosen for visual salience compared with 224 

the rest of the car’s dashboard. To create a visual distinction between the hand and the 225 

arm, we colored the hand portion white and the arm portion yellow. The hand was 226 

operated by positioning the wrist at an angle with the thumb facing upward and 227 

oscillating from the wrist.  228 

Two motions were designed to consider “taking the road” and “giving the road” 229 

gestures. The “taking the road” gesture originated from the wrist with the palm facing 230 

downward and raised to a 90-degree angle with the artificial palm perpendicular to the 231 

dash (see Figure 1. c), which indicated that the automated vehicle wanted the 232 

participants to wait. The “giving the road” gesture included horizontal-waved hand and 233 

arm motions (see Figure 1. d). In this way, participants received the signal with the 234 

intention of the automated vehicle wanting them to move first. The waving speeds of 235 

fast and slow arms were 120 beats per minute and 80 beats per minute. An apparatus 236 

that triggered the arms was set on the dash to the right of the driver’s seat and located 237 

0.2 meters away from the steering wheel. In this way, the participants can easily see the 238 

gestures on the automated vehicles.  239 

Step2: filming and editing videos  240 

A total of six gesture-transferred scenarios which corresponded to six experimental 241 

conditions were filmed into videos at a four-way crossroad at the University at Buffalo’s 242 

campus. We invited a middle-aged male driver to attend the filming. The driver sat in a 243 

car to simulate the driver in the automated vehicle. The car’s left turn signal was on and 244 

flashing to simulate a scenario in which the car intended to make a left turn. In the 245 
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human arm condition, gestures were transferred by the driver’s hand and arm when 246 

approaching the crossroad. The driver faced the camera with sunglasses and looked 247 

downward, wherein eye contact and facial expressions would be minimized (see Figure 248 

1. a, b). In the robotic arm conditions, gestures were transferred by the fast-waved and 249 

the slow-waved robotic arms, respectively. The driver lowered his head to simulate 250 

engaging in a non-driving related task. At the same location where the driver started 251 

waving his hand, the apparatus triggered the fast-waved robotic arm or the slow-waved 252 

robotic arm to transfer two gestures.  253 

After recording, each video was edited to be six seconds long, with two seconds of 254 

lead time before any action was taken by either the robotic arm apparatus or the driver 255 

and four seconds for the gesture to be viewed. Next, the videos were coded into a Visual 256 

Basic Application (VBA) format, which allowed the videos to be played and the 257 

responses of the participants to be documented. 258 

 259 

2.4 Experiment apparatus 260 

The experiment was conducted in a simulation room equipped with a keyboard, a 261 

60-inch TV screen, a driving set with an adjustable driving seat, a Logitech Driving 262 

Force steering wheel, a throttle pedal, and a brake pedal (Logitech Inc., Fremont, CA). 263 

Participants sat in the driving seat in front of the TV screen to simulate the drivers 264 

who would encounter an automated vehicle. The distances between participants and the 265 

screen were determined by the screen size and video. The vehicle shown in the video 266 

would be perceived as the same size and distance from the participant as in the real 267 

world, with the visual angle also relatively fixed based on the data collected along with 268 

the video. 269 

 270 

2.5 Procedure 271 

First, participants were welcomed. They were instructed to sign a consent form and 272 

a questionnaire related to their age, gender, driving experience, etc. Next, participants 273 

were instructed to sit in the driving seat and imagine that they were a driver manually 274 

driving approaching an uncontrolled crossroad to go straight. At the same time, 275 

participants were told that an oncoming automated vehicle would turn left; the vehicle 276 
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automation was above level 3, in which the driver in the automated vehicles would not 277 

participant in driving in most cases. Participants were told that the path of the front 278 

vehicle would intersect with their driving path; then, they should therefore know the 279 

intention of the oncoming automated vehicle by seeing gestures, which would be given 280 

by the driver or a robotic arm in the place of the driver. The experimenter checked and 281 

confirmed the participants’ correct understanding of the experimental task before the 282 

experiment. In the experiment, the previously edited videos corresponding to 283 

experimental conditions were presented to participants. The participants pressed the 284 

spacebar immediately once they understood the meaning of the gesture and reported its 285 

meaning transferred. At the end of each trial, the participants completed a four-point 286 

Likert scale to report their understanding of the received gesture and evaluate the 287 

politeness and comfort level of the gesture transferred from the automated vehicle. 288 

Participants were not given feedback on whether their understanding of the gesture was 289 

correct. A total of six trials corresponding to six scenario videos were included in the 290 

experiment. The order of six videos presented to participants was counterbalanced by 291 

the Latin Square to avoid the sequential effect (Bradley, 1958; Kantowitz et al., 2014) 292 

(see more details in Appendix Table A1). After finishing the experiment, each 293 

participant was thanked and compensated 10 dollars. The whole experiment lasted 294 

approximately 30 minutes.  295 

 296 

2.6 Data analysis 297 

The boxplots of response time, understanding, politeness, and comfort ratings were 298 

plotted by MATLAB R2021b (MathWorks, Inc. MA). Outliers pinpointed by the 299 

boxplot were excluded in the data analysis. Then statistical data were analyzed using 300 

IBM SPSS 26.0 (IBM, Inc). Firstly, the normality distribution of the response time was 301 

checked by the one-sample Kolmogorov Smirnov test. The original data of response 302 

time had positive skewness; thus, we transformed the data by the Box-Cox method 303 

before analysis (Box & Cox, 1964). Then a “mixed model approach,” which can 304 

consider the fixed and random effects, was used (Baayen et al., 2008; Breslow & 305 

Clayton, 1993; Wan & Sarter, 2022). A linear mixed model (LMM) was adopted for 306 

analyzing the response time, and a generalized linear mixed model (GLMM) with a 307 
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logit link function was conducted for binary variables (i.e., response accurate or not 308 

whereby 1 = accurate responses and 0 = inaccurate responses). In this study, the gesture 309 

type, arm type, and interactions were considered fixed variables, while the individual 310 

variance was considered the random variable. We used the paired t-test for the post-hoc 311 

test if the main effect was significant and the simple effect analysis if the interaction 312 

effect was significant. The Friedman test was first conducted for subjective ratings, 313 

which is a non-parametric statistical tool for ordinal data with repeated measures 314 

(Friedman, 1937). A Wilcoxon signed-rank test was employed for the post-hoc test if 315 

the Friedman test showed statistically significant differences (Wilcoxon, 1992). Due to 316 

the limitation of the Friedman test in exploring the interaction effect, we analyzed the 317 

effect of arm type on subjective ratings in two gesture conditions, respectively. In 318 

addition, all the significance level of the analyses was set to 0.05 and was corrected by 319 

the Bonferroni adjustment.  320 

 321 

3 Results 322 

3.1 Objective responses 323 

Response time 324 

Firstly, a boxplot with median and interquartile range (IQR) of response time was 325 

presented in Figure 2 (a). From the boxplot, it can be noted that the median value of 326 

response time of the slow-waved robotic arm was slightly higher than that of the fast-327 

waved robotic arm and the human arm, regardless of gesture type. Moreover, from the 328 

whiskers, the range of response time in the slow-waved robotic arm condition was 329 

relatively higher than that in the human arm and the fast-waved robotic arms. This 330 

indicated that participants had a relatively less consistent response time to the slow-331 

waved robotic arm. 332 

The LMM analysis indicated the significant main effect of arm types on response 333 

time (F (2, 154) = 9.443, p < 0.001). The post hoc test revealed that participants reacted 334 

faster under the human arm (Mean = 4.484, SD = 0.818) and the fast-waved robotic 335 

arm (Mean = 4.457, SD = 0.727) conditions than under the slow-waved robotic arm 336 

condition (Mean = 4.871, SD = 0.947) (p < 0.001 for each comparison). However, there 337 

were no significant differences between the human arm and the fast-waved robotic arm 338 
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in response time. No main effect of gesture type (F (1, 154) = 0.582, p = 0.447) nor the 339 

interaction effect of arm type and gesture type (F (2, 154) = 0.240, p = 0.787) on response 340 

time were observed. The detailed descriptive statistical values for response time in 341 

terms of arm type and gesture type were listed in Table 1.  342 

Response accuracy 343 

The detailed descriptive statistical values for response accuracy were listed in Table 344 

1. It can be noted that the mean response accuracy was highest in the human arm 345 

condition (giving the road: 100 ± 0 %; taking the road: 96.7 ± 18.3 %), then the second 346 

high in the fast-waved robotic arm condition (giving the road: 93.3 ± 25.4 %; taking 347 

the road: 96.7 ± 18.3 %), while the mean response accuracy of the slow-waved robotic 348 

arm (giving the road: 90 ± 30.5 %; taking the road: 86.7 ± 34.6 %) was lowest with 349 

largest standard deviation among three types of arms in each gesture condition.  350 

The GLMM analysis showed that the main effect of arms type (F (2, 174) = 10.235, 351 

p < 0.001) on response accuracy was significant. The mean response accuracy of the 352 

human arm, the fast-waved robotic arm, and the slow-waved robotic arm were 98.3% 353 

(SD = 12.9), 95.0% (SD = 22.0), and 88.3% (SD = 32.4), respectively. The post-hoc 354 

test suggested that the drivers responded to the human arm more accurately than the 355 

slow-waved robotic arm (p < 0.05). The differences between the fast-robotic and the 356 

human arm (p = 0.266) and the slow-waved robotic arm (p = 0.266) were not significant. 357 

There was an interaction effect of the arm type and gesture type on response accuracy 358 

(F (2, 174) = 3.688, p < 0.05). However, the simple effect analysis showed no significant 359 

differences for each paired comparison. Moreover, the main effect of the gesture type 360 

on response accuracy was also not significant (F (1, 174) = 2.408, p = 0.123).  361 

3.2 Subjective ratings  362 

Statistical descriptions, including the median, IQR, and mean rank of three 363 

subjective ratings, were listed in Table 2, and the data visualization was presented in 364 

Figure 2 (b) (c) (d).  365 

Understanding for gestures 366 

For giving the road gesture, a Friedman test revealed a significant effect of arm 367 

type on understanding for gestures (c2(2) = 8.000, p < .05). The post-hoc test showed 368 

the understanding ratings of the slow-waved robotic arm (median = 4.0, IQR = 3.0 – 369 
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4.0) was significantly lower than the human arm (median = 4.0, IQR = 4.0 – 4.0) (Z = 370 

– 2.310, p < .05, r = – 0.42) (see Figure 2 (b) and Table 3). The differences between the 371 

fast-waved robotic arm (median = 4.0, IQR = 3.0 – 4.0) with the human arm as well as 372 

it with the slow-waved robotic arm on understanding were not significant. 373 

For taking the road gesture, there was also a significant effect of arm type on 374 

understanding for gestures according to the Friedman test (c2(2) = 8.000, p < .05). The 375 

post-hoc test suggested that the understanding ratings for gesture of the slow-waved 376 

robotic arm (median = 3.0, IQR = 2.0 – 3.25) was significantly lower than the human 377 

arm (median = 3.0, IQR = 3.0 – 4.0) (Z = -2.556, p < .05, r = - 0.47) and the fast-waved 378 

robotic arm (median = 3.0, IQR = 3.0 – 4.0) (Z = - 2.982, p < .01, r = - 0.54) (see Figure 379 

2 (b) and Table 3). The differences between the fast-waved robotic arm and the human 380 

arm on understanding was not significant.  381 

Perceived politeness for gesture 382 

The Friedman tests suggested no significant differences of arm type on politeness 383 

for either giving the road gesture (c2(2) = 0.175, p = 0.916) or giving the road gesture 384 

(c2(2) = 0.485, p = 0.785). 385 

Comfort ratings for gestures  386 

For giving the road gesture, a Friedman test suggested the significant differences 387 

of arm type on comfort ratings for gestures (c2(2) = 7.000, p < .05). The post-hoc test 388 

showed the significantly lower comfort ratings of the slow-waved robotic arm (median 389 

= 3.0, IQR = 2.0 – 4.0) than that of the human arm (median = 3.0, IQR = 3.0 – 4.0) (Z 390 

= – 2.500, p < .05, r = – 0.46) and the fast-waved robotic arm (median = 3.0, IQR = 3.0 391 

– 4.0) (Z = – 2.066, p < .05, r = – 0.38) (see Figure 2 (d) and Table 3). No significant 392 

differences between the fast-waved robotic arm and the human arm on understanding 393 

was observed. 394 

For taking the road gesture, there was also a significant difference of arm type on 395 

comfort ratings for gestures (c2(2) = 26.079, p < .001). The post-hoc test suggested the 396 

significantly lower comfort ratings of the slow-waved robotic arm (median = 2.0, IQR 397 

= 2.0 – 3.0) than that of the human arm (median = 3.0, IQR = 2.0 – 4.0) (Z = – 4.234, 398 

p < .001, r = - 0.77) and the fast-waved robotic arm (median = 3.0, IQR = 2.0 – 3.25) 399 

(Z = -3.578, p < .001, r = – 0.65) (see Figure 2 (d) and Table 3). Again, the differences 400 
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between the fast-waved robotic arm and the human arm on understanding was not 401 

significant. 402 

 403 

4 Discussion 404 

 Within the mixed environment of manual driving vehicles and automated vehicles, 405 

it is important for automated systems to communicate with human drivers in manual 406 

driving vehicles effectively. In exploring whether gestures produced by robotic arms 407 

can be utilized to transfer the automated vehicles’ intentions to human drivers, this study 408 

investigated the effects of various types of arms (human arm, fast-waved robotic arm, 409 

and slow-waved robotic arm) and gestures (“giving the road” and “taking the road”) on 410 

drivers’ objective responses and subjective opinions.  411 

4.1 The effect of robotic arms on drivers’ responses 412 

In terms of the effect of using robotic arms in transferring gestures on the 413 

participants’ responses, results suggested that the fast-waved robotic arm had a similar 414 

effect to the human arm in drivers’ safe responses and positive subjective opinions. 415 

Specifically, regarding response time, drivers averagely responded to the fast-waved 416 

robotic arm (4.457 ± 0.727 s) as quickly as the human arm (4.484 ± 0.818 s). Moreover, 417 

they responded to both above arms more swiftly than the slow-waved robotic arm 418 

(4.871 ± 0.947 s) from the onset of gestures. For one thing, this response time was 419 

relatively shorter than that in the previous study (Fuest et al., 2020), which found the 420 

pedestrians’ intention recognition time to the intention of the automated system was 421 

between 4.7 s – 6.7 s based on a video experiment. It might lie in the differences in 422 

intention communication objects and methods between the present study and Fuest et 423 

al. (2020)’ s. The present study focused on the communication of automated vehicles 424 

to human drivers, while Fuest et al. (2020) focused on pedestrians. Pedestrians were 425 

more vulnerable than drivers and may feel more uncertain about intentions they 426 

understood; thus, they needed more time to press the button. Moreover, the present 427 

study utilized gesture-based arms for communicating between automated vehicles and 428 

humans. However, the intentions of automated vehicles were conveyed by changing 429 

speed in Fuest et al. (2020)’ study, the latter of which may take the participants some 430 

time to recognize the speed variance of the automated vehicle before interpreting its 431 
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intention. For another, the response time differences were 0.387 s between the slow-432 

waved robotic and human arm and 0.414 s between the slow-waved robotic and the 433 

fast-waved robotic arm. These time differences were close to that in a previous study 434 

(Sullivan et al., 2008), which found that the differences in drivers’ response time to 435 

warning systems with two different reliability was about 0.375 s. While the Sullivan et 436 

al. (2008)’ s study focused on the traffic safety issue, the response delay in the present 437 

study might influence the traffic efficiency or stability in the mixed traffic environment 438 

(Do et al., 2019; Guériau & Dusparic, 2020; Kesting & Treiber, 2008; Mahmud et al., 439 

2017). Based on the finding that the increase of drivers’ reaction time and acceleration 440 

led to a decrease in the traffic stability (Kesting & Treiber, 2008; May, 1990), it could 441 

be inferred that the cumulative effects of many pairs of vehicle-to-drivers 442 

communication with the extra response time would reduce traffic stability and may give 443 

a burden on the traffic congestions, especially in urban areas. Nevertheless, the present 444 

study did not explain how the response time differences of different arms would affect 445 

the traffic efficiency or stability, which were supposed to be explored in future studies. 446 

Moreover, the response accuracy showed a similar trend for different arm types. 447 

The fast-waved robotic arm led to a similarly high response accuracy (98.3 ± 12.9 %) 448 

as the human arm (95.0 ± 22.0 %). Furthermore, both above arms resulted in 449 

significantly more accurate responses than the slow-waved robotic arm (88.3 ± 32.4%). 450 

Although the mean response accuracy of different arms did not differ much (the slow-451 

waved robotic arm can achieve 88.3 % on average), some subsequent effects should be 452 

considered. For instance, if drivers misunderstand the automated vehicles’ attention and 453 

adopt the wrong actions (e.g., driving directly when the automated system tends to take 454 

the road or keeping waiting when the automated system gives the road to drivers), the 455 

risks of accidents and congestion would be raised. Therefore, the fast-waved robotic 456 

arms, which can lead to fast and accurate responses, were supposed to be considered 457 

primarily for application.  458 

In summary, it can be inferred that response time and accuracy results supported 459 

the fast-waved robotic arm rather than the slow-waved robotic arm. On the one hand, it 460 

may be because the participants’ recognition of gestures required a certain amplitude of 461 

motions of arms. As the amplitude of the slow-waved robotic arm changed relatively 462 



International Journal of Human–Computer Interaction (2022 Accepted) 

17 
 

slowly, it was hardly distinguishable at first sight. Only after the motion reached a 463 

certain amplitude could the meaning of gestures be formed. With the increment of 464 

waving speed, the intention of gestures can be perceived and understood quickly. Thus, 465 

participants may spend less time recognizing and responding to the fast-waved robotic 466 

arm than the slow-waved robotic arm. On the other hand, fast robot motions were 467 

related to human beings’ perceived arousal and valence during the human-robot 468 

interactions (Saerbeck & Bartneck, 2010; Zoghbi et al., 2009). It may be because the 469 

fast-waved robotic arms enhanced the drivers’ arousal level, thus, leading to their faster 470 

responses and higher accuracy. 471 

4.2 The effect of robotic arms on drivers’ subjective opinions 472 

The results of the subjective ratings were mostly consistent with that of the 473 

objective behaviors, which indicated that the fast-waved robotic arm was as favorable 474 

as the human arm while the slow-waved robotic arms were less favored. Specifically, 475 

although the median value of understanding for three arms was the same in giving the 476 

road (4.0 for all arms) or taking the road conditions (3.0 for all arms), the IQR indicated 477 

the differences. When the participants showed the most consistent and best 478 

understanding of the human arm (IQR giving the road: 4.0 – 4.0, IQR taking the road: 3.0 – 4.0), 479 

the understanding scores of the slow-waved robotic arm was rated with higher variance 480 

(IQR giving the road: 3.0 – 4.0, IQR taking the road: 2.0 – 3.25). This suggested that participants 481 

were more uncertain about whether they correctly understood the intentions when 482 

gestures were transferred by the slow-waved robotic arms. Based on the statistical 483 

analysis results, it can be concluded that the robotic arm was less understandable than 484 

the human arm while the fast-waved robotic arm was as understandable as the human 485 

arm. When it comes to the comfort ratings, the median value of the slow-waved robotic 486 

arm (2.0) was lower than that of the human arm (3.0) and the fast-waved robotic arm 487 

(3.0) in taking the road condition. In addition, the slow-waved robotic arm (IQR giving 488 

the road: 2.0 – 4.0) was rated more scattered in comfort ratings than the human arm (IQR 489 

giving the road: 3.0 – 4.0) and the fast-waved robotic arms (IQR giving the road: 3.0 – 4.0), which 490 

indicated the higher uncertainty of participants in determining how comfortable the 491 

slow-waved robotic arm was. Combining with statistical analysis, we inferred that the 492 

slow-waved robotic arm was less comfortable than the human arm and the fast-waved 493 
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robotic arm. It was noticeable that different types of arms showed no significant 494 

differences in the participants’ politeness ratings. This further indicated that both 495 

robotic arms were perceived as polite as the human arm, regardless of how fast the arms 496 

waved. It might be because rather than taking actions directly without giving any signs, 497 

showing gestures was a polite behavior on the road no matter the gestures were 498 

transferred by which type of arms. 499 

4.3 Limitations and future work 500 

Several limitations should be considered when interpreting the results of this study. 501 

First, the present study about the effectiveness of robotic gestures on communication 502 

between the automated vehicle and other drivers was specific to some environments. 503 

For one thing, the premise of using the robotic arms to indicate gestures was the certain 504 

degree of visibility of the environment. When it comes to the physical environment with 505 

poor visibility (e.g., light conditions, angles) (Risto et al., 2017), the effectiveness of 506 

robotic arms may be limited. Under these circumstances, other features of robotic arms, 507 

such as luminance, should be considered. For another, the robotic arm might be needless 508 

when it comes to some simple traffic situations. For instance, turning on the automated 509 

vehicle’s left indicator according to the usual traffic rule is sufficient for drivers behind 510 

the automated vehicle to understand its left-turn intention (Rodemerk et al., 2015). 511 

Therefore, in future studies, it is necessary to define the scenarios where the robotic 512 

arms would benefit in transferring the intentions of automated vehicles to adapt to 513 

traffic situations with various communication needs. Second, two typical gestures (i.e., 514 

“taking the road” and “giving the road”) were primarily considered in this study. Other 515 

common gestures like left/right turns or gestures that expressed more complicated 516 

intentions of automated vehicles, such as thanks and warnings, can be included in future 517 

studies. In addition, the study adopted two general gestures that can keep consistently 518 

in different countries (Gupta et al., 2016). However, it should note that cultural 519 

differences exist in interpreting the intentions of some other gestures (Archer, 1997; 520 

Gupta et al., 2016; Stanciu et al., 2018). To make the gestures more universally 521 

applicable, future researchers should consider the localization or cultural differences in 522 

gestures when applying them to convey the intentions of automated vehicles. Third, the 523 

present study only considered the interaction between automated vehicles and human 524 
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drivers in manual driving vehicles. Other road users, such as pedestrians and cyclists, 525 

are more vulnerable than drivers in cars and may require different communication 526 

patterns with automated vehicles (Anaya et al., 2014; Sewalkar & Seitz, 2019). Thus, 527 

the effect of gestures by robotic arms in communicating between automated vehicles 528 

and vulnerable road users is supposed to be investigated in future studies. Fourth, some 529 

practical issues related to the drivers in the automated vehicles should be concerned for 530 

the application of robotic arms. For one thing, the attitudes of drivers who own the 531 

automated vehicles to robotic arms (e.g., trust and acceptance) should be considered to 532 

determine how they would use this new device. For another, in situations with no 533 

communication needs, how to manage the presentation of robotic arms should be 534 

concerned because the existence of robotic arms may interfere with drivers’ view in 535 

case of driving needs. In this circumstance, a self-adapted system, which can be 536 

embedded with the robotic arms systems to show up the robotic arm when it detects 537 

communication needs and put it down automatedly when there is no need for 538 

communications, might be a promising method. Fifth, this study adopted the simulated 539 

experiment based on video recordings for safety considerations. However, the external 540 

validity of the present study was limited, which may inhibit the generalization of the 541 

present findings. The communication between automated vehicles and humans in a 542 

true-to-life environment with the adoption of more realistic methods such as the Wizard 543 

of Oz for automation (Riek, 2012) can be considered in future studies. 544 

 545 

5 Conclusion 546 

This study proposed using robotic arms to transfer gestures on behalf of automated 547 

vehicles to communicate with human drivers in manual driving vehicles. We found that 548 

regardless of whether the gesture was giving the road or taking the road, transferring 549 

gestures by the fast-waved robotic arm exerted as fast and accurate responses as the 550 

human arm. In addition, the fast-robotic arm received as understandable, polite, and 551 

comfortable ratings from participants as the human arm. The results further indicated 552 

that conveying gestures by a fast-waved robotic arm (waving at 120 beats per minute) 553 

can facilitate effective communication between automated vehicles and human drivers 554 

in manual driving vehicles. The present study’s findings provided implications for 555 
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manufacturers and designers to adopt simple-device-based robotic arms to generate safe 556 

and user-friendly automated vehicles. 557 
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Appendix  
Table A1. balanced Latin Square for six experimental conditions 

 
Order of testing conditions 

subjects 1 st 2 nd 3 rd 4 th 5 th 6 th 
a 1 2 6 3 5 4 
b 2 3 1 4 6 5 
c 3 4 2 5 1 6 
d 4 5 3 6 2 1 
e 5 6 4 1 3 2 
f 6 1 5 2 4 3 

(repeat)       
Note: 1 - video 1: taking the road gesture by the human arm; 2 - video 2: giving the road by the 
human arm; 3 - video 3: taking the road by the fast-waved robotic arm; 4 - video 4: giving the 
road by the fast-waved robotic arm; 5 - video 5: taking the road by the slow-waved robotic arm; 
6 - video 6: giving the road by the slow-waved robotic arm.   
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Figure 1. Gesture transferring scenarios. a. “taking the road” gesture with human arm; 
b. “giving the road” gesture with human arm; c. “taking the road” gesture with the 
robotic arm; d. “giving the road” gesture with the robotic arm (the speed of the gestures 
transferred by robotic arms cannot be presented in photos) 
 

 
 
Figure 2. Boxplots of raw data of dependent variables in terms of arm type and gesture 
type, (a) response time, (b) understanding (1 = “not understandable at all”, 4 =“very 
understandable”), (c) politeness (1 = “not polite at all”, 4 = “very polite”), (d) comfort 
(1 = “not comfort at all”, 4 = “very comfort”) (the thick middle line within the box 
represents the median value, the lower and upper hinge of the box represent the first 
(Q1) and third quartile (Q3), whiskers were no larger than 1.5 times the interquartile 
range, and red plus signs represent outliers). 

a. taking the road gesture with human arm b. giving the road gesture with human arm 

c. taking the road gesture with the robotic arm d. giving the road gesture with the robotic arm  
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Table 1. Descriptive statistical data of response time and response accuracy for different arms 
and gestures 
 

Gesture type Arm type Response 
time (s) 

Response 
accuracy (%) 

Giving the road 

human 4.476 
(0.783) 

100 
(0.00) 

Fast-waved robotic 4.519 
(0.762) 

93.3 
(25.4) 

Slow-waved robotic 4.874 
(0.977) 

90.0 
(30.5) 

    

Taking the road 

human 4.493 
(0.871) 

96.7 
(18.3) 

Fast-waved robotic 4.386 
(0.693) 

96.7 
(18.3) 

Slow-waved robotic 4.867 
(0.931) 

86.7 
(34.6) 

Notes: Data were mean (standard deviation). 
 
Table 2. Median, interquartile range, and mean rank of subjective ratings for different arms and 
gestures. 
 

Gesture 
type Arm type Understanding Politeness Comfort 

  Median IQR Mean 
rank Median IQR Mean 

rank Median IQR Mean 
rank 

Giving 
the road 

human 4.0 4.0-4.0 2.2 3.0 2.0-4.0 2.02 3.0 3.0-4.0 2.22 
Fast-waved robotic 4.0 3.0-4.0 1.93 3.0 3.0-4.0 2.03 3.0 3.0-4.0 2.05 
Slow-waved robotic 4.0 3.0-4.0 1.87 3.0 2.0-4.0 1.95 3.0 2.0-4.0 1.73 

           

Taking 
the road 

human 3.0 3.0-4.0 2.15 3.0 2.0-4.0 1.93 3.0 2.0-4.0 2.43 
Fast-waved robotic 3.0 3.0-4.0 2.22 3.0 3.0-4.0 2.07 3.0 2.0-3.25 2.15 
Slow-waved robotic 3.0 2.0-3.25 1.63 3.0 3.0-4.0 2.00 2.0 2.0-3.0 1.42 

Note: IQR: interquartile range; for understanding: 1 = “not understandable at all”, 4 = “very 
understandable”); for politeness: 1 = “not polite at all”, 4 = “very polite”; for comfort: 1 = “not 
comfort at all”, 4 = “very comfort”.  
 
 
Table 3. The Wilcoxon test results of understanding and comfort ratings for different arms 
under different gestures. 
 

Gesture type Arm type comparison Understanding Comfort 
  Z p r Z p r 

Giving the road 
Fast-waved vs. Human -1.930 0.054 -0.35 -1.291 0.197 -0.24 
Slow-waved vs. Human -2.310 0.021* -0.42 -2.500 0.012* -0.46 

Slow-waved vs. Fast-waved -0.272 0.785 -0.05 -2.066 0.039* -0.38 
        

Taking the road 
Fast-waved vs. Human -0.302 0.763 -0.06 -1.698 0.090 -0.31 
Slow-waved vs. Human -2.556 0.011* -0.47 -4.234 <.001*** -0.77 

Slow-waved vs. Fast-waved -2.982 0.003* -0.54 -3.578 <.001*** -0.65 
Note. *p < 0.05; ***p < 0.001. 
 
 

 


